Correlating the CMB with luminous red galaxies: The Integrated Sachs-Wolfe effect

We present a 2.5{sigma} detection of the Integrated Sachs-Wolfe (ISW) effect and discuss the constraints it places on cosmological parameters. We cross correlate microwave temperature maps from the Wilkinson microwave anisotropy probe (WMAP) satellite with a 4000 deg{sup 2} luminous red galaxy (LRG) overdensity map measured by the Sloan Digital Sky Survey. These galaxies have accurate photometric redshifts ({delta}z{approx}0.03) and an approximately volume limited redshift distribution from z{approx}0.2 to z{approx}0.6 well suited to detecting the ISW effect. Accurate photometric redshifts allow us to perform a reliable autocorrelation analysis of the LRGs, eliminating the uncertainty in the galaxy bias, and combined with the cross correlation signal, constrains cosmological parameters--in particular, the matter density. We use a minimum-variance power spectrum estimator that optimally weights the data according to expected theoretical templates. We find a 2.5{sigma} signal in the Ka, Q, V, and W WMAP bands, after combining the information from multipoles 2{<=}l<400. This is consistent with the expected amplitude of the ISW effect but requires a lower matter density than is usually assumed: the amplitude, parametrized by the galaxy bias assuming {omega}{sub M}=0.3, {omega}{sub {lambda}}=0.7, and {sigma}{sub 8}=0.9, is b{sub g}=4.05{+-}1.54 for V band, with similar results for the other bands. Thismore » should be compared to b{sub g}=1.82{+-}0.02 from the autocorrelation analysis. These data provide only a weak confirmation (2.5{sigma}) of dark energy but provide a significant upper limit: {omega}{sub {lambda}}=0.80{sub -0.06}{sup +0.03}(1{sigma}){sub -0.19}{sup +0.05}(2{sigma}), assuming a cosmology with {omega}{sub M}+{omega}{sub {lambda}}=1, {omega}{sub b}=0.05, {sigma}{sub 8}=0.9, and w=-1. The weak cross correlation signal rules out low matter density/high dark energy density universes and, in combination with other data, strongly constrains models with w<-1.3. We provide a simple prescription to incorporate these constraints into cosmological parameter estimation methods for ({omega}{sub M},{sigma}{sub 8},w). We find no evidence for a systematic contamination of ISW signal, either from galactic or extragalactic sources, but we do detect some large statistical fluctuations on smaller scales that could affect analyses without the template weighting.« less

[1]  A. Hamilton Uncorrelated modes of the non-linear power spectrum , 1999, astro-ph/9905191.

[2]  F. Miller Maley,et al.  An Efficient Algorithm for Positioning Tiles in the Sloan Digital Sky Survey , 2001 .

[3]  Bhasker K. Moorthy,et al.  The First Data Release of the Sloan Digital Sky Survey , 2003, astro-ph/0305492.

[4]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[5]  J. D. Talman,et al.  Numerical Fourier and Bessel transforms in logarithmic variables , 1978 .

[6]  Max Tegmark How to measure CMB power spectra without losing information , 1996, astro-ph/9611174.

[7]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[8]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[9]  R. Nichol,et al.  The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.

[10]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing Methods and Systematic Error Limits , 2003, astro-ph/0302222.

[11]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[12]  U. Seljak Weak Lensing Reconstruction and Power Spectrum Estimation: Minimum Variance Methods , 1997, astro-ph/9711124.

[13]  R. Sachs,et al.  Perturbations of a Cosmological Model and Angular Variations of the Microwave Background , 1967 .

[14]  Alexander S. Szalay,et al.  Calibrating photometric redshifts of luminous red galaxies , 2005 .

[15]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[16]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[17]  M. Strauss,et al.  Cross - correlation of the Cosmic Microwave Background with the 2MASS galaxy survey: Signatures of dark energy, hot gas, and point sources , 2003, astro-ph/0308260.

[18]  Douglas P. Finkbeiner,et al.  A Full-Sky Hα Template for Microwave Foreground Prediction , 2003, astro-ph/0301558.

[19]  Cross-correlation of CMB with large-scale structure: Weak gravitational lensing , 2004, astro-ph/0406004.

[20]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[21]  Robert Crittenden,et al.  A correlation between the cosmic microwave background and large-scale structure in the Universe , 2004, Nature.

[22]  R. Nichol,et al.  The 3D power spectrum of galaxies from the SDSS , 2003, astro-ph/0310725.

[23]  Max Tegmark,et al.  High resolution foreground cleaned CMB map from WMAP , 2003, astro-ph/0302496.

[24]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[25]  Integrated Sachs-Wolfe effect in cross-correlation: The observer's manual , 2004, astro-ph/0401166.

[26]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[27]  Y. Zel’dovich,et al.  The velocity of clusters of galaxies relative to the microwave background. The possibility of its measurement , 1980 .

[28]  M. Halpern,et al.  First Year Wilkinson Microwave Anisotropy Probe Observations: Dark Energy Induced Correlation with Radio Sources , 2003, astro-ph/0305097.

[29]  Microwave ISM Emission Observed by WMAP , 2003, astro-ph/0311547.

[30]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles and Window Functions , 2003, astro-ph/0302214.

[31]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: On-Orbit Radiometer Characterization , 2003, astro-ph/0302224.

[32]  F. M. Maley,et al.  An Efficient Targeting Strategy for Multiobject Spectrograph Surveys: the Sloan Digital Sky Survey “Tiling” Algorithm , 2001, astro-ph/0105535.

[33]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[34]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[35]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[36]  Alexander S. Szalay,et al.  Sloan digital sky survey: Early data release , 2002 .

[37]  S. Boughn,et al.  The Large-Scale Bias of the Hard X-Ray Background , 2004, astro-ph/0404348.

[38]  et al,et al.  Sloan Digital Sky Survey Imaging of Low Galactic Latitude Fields: Technical Summary and Data Release , 2004, astro-ph/0409700.

[39]  N. Turok,et al.  Looking for a cosmological constant with the Rees-Sciama effect. , 1996, Physical review letters.

[40]  Integrated Sachs-Wolfe effect: Large scale structure correlation , 2001, astro-ph/0112408.

[41]  Ya. B. Zel'Dovich,et al.  Microwave background radiation as a probe of the contemporary structure and history of the universe , 1980 .

[42]  Edward J. Wollack,et al.  First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission , 2003, astro-ph/0302208.

[43]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[44]  M. Gladders,et al.  A New Method For Galaxy Cluster Detection. I. The Algorithm , 2000, astro-ph/0004092.

[45]  Pablo Fosalba,et al.  Measurement of the gravitational potential evolution from the cross‐correlation between WMAP and the APM Galaxy Survey , 2003, astro-ph/0305468.

[46]  D. Weinberg,et al.  Constraints on the Effects of Locally Biased Galaxy Formation , 1997, astro-ph/9712192.

[47]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[48]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[49]  R. Lupton,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[50]  Mining weak lensing surveys , 2002, astro-ph/0210478.

[51]  Cross-Correlating the Sloan Digital Sky Survey with the Microwave Sky , 2000, astro-ph/0001393.

[52]  U. Seljak,et al.  Sunyaev-Zeldovich effect in WMAP and its effect on cosmological parameters , 2004, astro-ph/0404545.

[53]  D. Finkbeiner Microwave Interstellar Medium Emission Observed by the Wilkinson Microwave Anisotropy Probe , 2004 .