LLL Reduction Achieves the Receive Diversity in MIMO Decoding

Diversity order is an important measure for the performance of communication systems over multiple-input-multiple-output (MIMO) fading channels. In this correspondence, we prove that in MIMO multiple- access systems (or MIMO point-to-point systems with V-BLAST transmission), lattice-reduction-aided decoding achieves the maximum receive diversity (which is equal to the number of receive antennas). Also, we prove that the naive lattice decoding (which discards the out-of-region decoded points) achieves the maximum diversity.

[1]  Gerard J. Foschini,et al.  Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas , 1996, Bell Labs Technical Journal.

[2]  Mohamed Oussama Damen,et al.  Lattice code decoder for space-time codes , 2000, IEEE Communications Letters.

[3]  Huguette Napias,et al.  A generalization of the LLL-algorithm over euclidean rings or orders , 1996 .

[4]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[5]  Gregory W. Wornell,et al.  Lattice-reduction-aided detectors for MIMO communication systems , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[6]  Wai Ho Mow,et al.  Universal lattice decoding: principle and recent advances , 2003, Wirel. Commun. Mob. Comput..

[7]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[8]  Amir K. Khandani,et al.  Communication Over MIMO Broadcast Channels Using Lattice-Basis Reduction , 2006, IEEE Transactions on Information Theory.

[9]  Giuseppe Caire,et al.  Lattice coding and decoding achieve the optimal diversity-multiplexing tradeoff of MIMO channels , 2004, IEEE Transactions on Information Theory.

[10]  Robert F. H. Fischer,et al.  Low-complexity near-maximum-likelihood detection and precoding for MIMO systems using lattice reduction , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).

[11]  A. Robert Calderbank,et al.  Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.

[12]  Cong Ling,et al.  Approximate Lattice Decoding: Primal Versus Dual Basis Reduction , 2006, 2006 IEEE International Symposium on Information Theory.