Artificial intelligence and human decision making

Abstract Decision is obviously related to reasoning. One of the possible definitions of artificial intelligence (AI) refers to cognitive processes and especially to reasoning. Before making any decision, people also reason, it is therefore natural to explore the links between AI and decision making. This paper distinguishes between two aspects of decision making: diagnosis and look-ahead. It is shown that, on the one hand, AI has many relationships with diagnosis (expert systems, case-based reasoning, fuzzy set and rough set theories). On the other hand, AI has not paid enough attention to look-ahead reasoning, whose main components are uncertainty and preferences. These aspects of AI and decision making are reviewed in the paper.

[1]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[2]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[3]  Stephen Slade,et al.  Case-Based Reasoning: A Research Paradigm , 1991, AI Mag..

[4]  David Chapman,et al.  Planning for Conjunctive Goals , 1987, Artif. Intell..

[5]  Jean-Marie Bouroche,et al.  Analyse des données multidimensionnelles , 1977 .

[6]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Alain Guénoche,et al.  Trees and proximity representations , 1991, Wiley-Interscience series in discrete mathematics and optimization.

[8]  John R. Anderson The Architecture of Cognition , 1983 .

[9]  D. Sterman,et al.  Misperceptions of Feedback in a Dynamic Decision Making Experiment , 1989 .

[10]  H. T. Smith,et al.  Human Interaction with Computers , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  Gilbert Saporta,et al.  Probabilités, Analyse des données et statistique , 1991 .

[12]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[13]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[14]  Max Henrion,et al.  Uncertainty in artificial intelligence: Is probability epistemologically and heuristically accurate? , 1987 .

[15]  Nicholas Kushmerick,et al.  An Algorithm for Probabilistic Least-Commitment Planning , 1994, AAAI.

[16]  Ralph L. Keeney,et al.  Value-driven expert systems for decision support , 1988, Decis. Support Syst..

[17]  Jean-Charles Pomerol,et al.  Systèmes interactifs d'aide à la décision et systèmes experts , 1989 .

[18]  Don N. Kleinmuntz,et al.  Cognitive Heuristics and Feedback in a Dynamic Decision Environment , 1985 .

[19]  M. Schader,et al.  New Approaches in Classification and Data Analysis , 1994 .

[20]  Gordon Miller,et al.  Decision Making: Descriptive, Normative, and Prescriptive Interactions , 1990 .

[21]  Herbert A. Simon,et al.  The new science of management decision , 1960 .

[22]  Jon Doyle,et al.  Rational control of reasoning in Artificial Intelligence , 1989, The Logic of Theory Change.

[23]  N. V. Findler Trade-off issues in a predictive man—machine environment (PMME) , 1995 .

[24]  H. Simon,et al.  Models of My Life , 1991 .

[25]  R. M. Oliver,et al.  Influence diagrams, belief nets and decision analysis , 1992 .

[26]  Didier Dubois,et al.  Possibility Theory as a Basis for Qualitative Decision Theory , 1995, IJCAI.

[27]  I. Gilboa,et al.  Case-Based Decision Theory , 1995 .

[28]  John P. van Gigch,et al.  Decision making about decision making: metamodels and metasystems , 1986 .

[29]  J.-Ch. Pomerol Autour du concept de décision assistée par ordinateur , 1992 .

[30]  Kenneth R. Hammond Toward a unified approach to the study of expert judgment , 1987 .

[31]  Richard Reviewer-Granger Unified Theories of Cognition , 1991, Journal of Cognitive Neuroscience.

[32]  Judea Pearl,et al.  Qualitative Decision Theory , 1994, AAAI.

[33]  Massimo Paruccini,et al.  Applying multiple criteria aid for decision to environmental management. , 1994 .

[34]  Jon Doyle,et al.  Preferential Semantics for Goals , 1991, AAAI.

[35]  R. Palmer,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[36]  Janet L. Kolodner,et al.  The MEDIATOR: Analysis of an Early Case-Based Problem Solver , 1989, Cogn. Sci..

[37]  Hector J. Levesque,et al.  Intention is Choice with Commitment , 1990, Artif. Intell..

[38]  Jens Rasmussen,et al.  Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[39]  Janet L. Kolodner,et al.  A Process Model of Cased-Based Reasoning in Problem Solving , 1985, IJCAI.

[40]  A. Rubinstein Similarity and decision-making under risk (is there a utility theory resolution to the Allais paradox?) , 1988 .

[41]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[42]  Allen Newell,et al.  Human Problem Solving. , 1973 .

[43]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[44]  Jon A. Turner,et al.  Planning Forward by Looking Backward: Retrospective Thinking in Strategic Decision Making* , 1994 .

[45]  A. Berthoz,et al.  Neural Basis of Decision in Perception and in the Control of Movement , 1996 .

[46]  Allen Newell,et al.  The Knowledge Level , 1989, Artif. Intell..

[47]  Paul S. Rosenbloom,et al.  Universal Subgoaling and Chunking , 1986 .

[48]  Didier Dubois,et al.  Refinements of the maximin approach to decision-making in a fuzzy environment , 1996, Fuzzy Sets Syst..

[49]  Glenn J. Browne,et al.  Conceptual foundations of design problem solving , 1993, IEEE Trans. Syst. Man Cybern..

[50]  Arie Tzvieli Possibility theory: An approach to computerized processing of uncertainty , 1990, J. Am. Soc. Inf. Sci..

[51]  John R. Anderson,et al.  Rules of the Mind , 1993 .

[52]  Janet L. Kolodner,et al.  Maintaining Organization in a Dynamic Long-Term Memory , 1983, Cogn. Sci..

[53]  Spyros Makridakis,et al.  The art and science of forecasting An assessment and future directions , 1986 .

[54]  R. M. Dudley,et al.  Influence Diagrams, Belief Nets and Decision Analysis. , 1991 .

[55]  Hong Chen,et al.  Approximations of continuous functionals by neural networks with application to dynamic systems , 1993, IEEE Trans. Neural Networks.

[56]  John S. Edwards Expert Systems: A Decision Support Approach. , 1991 .

[57]  Matthias Jarke,et al.  OR in decision support and expert systems , 1989, Decis. Support Syst..

[58]  Eric F. Wolstenholme,et al.  System Enquiry: A System Dynamics Approach , 1990 .

[59]  Richard E. Neapolitan,et al.  Probabilistic reasoning in expert systems - theory and algorithms , 2012 .

[60]  P. Lévine,et al.  Knowledge representation by schemata in financial expert systems , 1989 .

[61]  Mark Stefik,et al.  Planning with Constraints (MOLGEN: Part 1) , 1981, Artif. Intell..

[62]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[63]  Ellen Perecman,et al.  The frontal lobes revisited. , 1987 .

[64]  Z. Pawlak,et al.  Rough set approach to multi-attribute decision analysis , 1994 .

[65]  A. Damasio,et al.  Neurobiology of Decision-Making , 2012, Research and Perspectives in Neurosciences.

[66]  Jeryl L. Mumpower,et al.  Very simple expert systems: an application of judgment analysis to political risk analysis , 1987 .

[67]  P J Lewis,et al.  The decision making basis for information systems: the contribution of Vickers' concept of appreciation to a soft systems perspective , 1991 .

[68]  Howard Carter,et al.  Foundations of Decision Support Systems , 1982 .

[69]  Henry Mintzberg The rise and fall of strategic planning , 1993 .

[70]  J. Keynes A Treatise on Probability. , 1923 .

[71]  B. Roy,et al.  The use of fuzzy outranking relations in preference modelling , 1992 .

[72]  Ortwin Renn,et al.  Expert Judgment and Expert Systems , 1987, NATO ASI Series.

[73]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[74]  Harold Guetzkow,et al.  Comparative Studies in Administration. , 1960 .

[75]  H. Simon,et al.  The New Science of Management Decision, Revised Edition. , 1977 .

[76]  Patrick Brézillon,et al.  Misuse and nonuse of knowledge-based systems: the past experiences revisited , 1996 .

[77]  C. Zopounidis,et al.  Rough-Set Sorting of Firms According to Bankruptcy Risk , 1994 .

[78]  W. Edwards,et al.  Decision Analysis and Behavioral Research , 1986 .

[79]  H. Simon,et al.  Reason in Human Affairs. , 1984 .

[80]  Edward H. Shortliffe,et al.  Computer-based medical consultations, MYCIN , 1976 .

[81]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[82]  J. Doyle,et al.  Artificial Intelligence and Rational Self-Government , 1988 .

[83]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[84]  Z. Pawlak,et al.  Decision analysis using rough sets , 1994 .

[85]  R. Słowiński Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory , 1992 .

[86]  Prakash P. Shenoy,et al.  A comparison of graphical techniques for decision analysis , 1994 .

[87]  Don N. Kleinmuntz,et al.  Information processing and misperceptions of the implications of feedback in dynamic decision making , 1993 .

[88]  J. Thompson,et al.  Strategies, Structures, and Processes of Organizational Decision , 1959 .

[89]  Roman Słowiński,et al.  Evaluation of vibroacoustic diagnostic symptoms by means of the rough sets theory , 1992 .

[90]  Spyros Makridakis,et al.  Forecasting and Planning: An Evaluation , 1981 .

[91]  D. Kahneman,et al.  Timid choices and bold forecasts: a cognitive perspective on risk taking , 1993 .

[92]  Michael P. Wellman,et al.  Planning and Control , 1991 .

[93]  A. Drogoul De la simulation multi-agents a la resolution collective de problemes : une etude de l'emergence de structures d'organisation dans les systemes multi-agents , 1993 .

[94]  Jean-Charles Pomerol,et al.  The role of the decision maker in DSSs and representation levels , 1995, Proceedings of the Twenty-Eighth Annual Hawaii International Conference on System Sciences.

[95]  W. Köhler The Mentality of Apes. , 2018, Nature.

[96]  Roman Słowiński,et al.  Rough Classification with Valued Closeness Relation , 1994 .

[97]  Roman Słowiński,et al.  Intelligent Decision Support , 1992, Theory and Decision Library.

[98]  G. Shafer Savage revisited , 1990 .

[99]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[100]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[101]  Peter Haddawy,et al.  Utility Models for Goal‐Directed, Decision‐Theoretic Planners , 1998, Comput. Intell..

[102]  Robert K. Holmes System enquiry: A system dynamics approach: John Wiley & Sons, Chichester, 1990, xi + 238 pages, £16.50, ISBN 0-471-92783-X , 1991 .

[103]  Jon Doyle,et al.  Impediments to Universal Preference-Based Default Theories , 1989, KR.

[104]  Lee Roy Beach Expert Systems: A Decision Support Approach. , 1991 .

[105]  Lessey Sooklal,et al.  Measurement for Management Decision , 1982 .

[106]  Roman Slowinski,et al.  Rough Set Learning of Preferential Attitude in Multi-Criteria Decision Making , 1993, ISMIS.

[107]  R. Sternberg Metaphors of mind: Conceptions of the nature of intelligence. , 1990 .

[108]  K. Jantke Planning for Learning , 2020, The Power of Assessment for Learning: Twenty Years of Research and Practice in UK and US Classrooms.

[109]  J. Jaffray Choice under risk and the security factor: An axiomatic model , 1988 .

[110]  J.-Ch. Pomerol,et al.  From aggregating by rules to the integration of expert systems in multicriteria DSSs , 1993, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.

[111]  W. B. La Naissance de l'Intelligence , 1909, Nature.