Theories for laminated and sandwich plates

The growing use of sandwich and laminated plates requires a theoretically based prediction of the mechanical behavior of structural elements of such type. Starting with the pioneering studies of Reissner, a great number of theories for the engineering calculations have been developed. The review deals with the classification of the theories and discusses some of them in detail.

[1]  Dahsin Liu,et al.  Zigzag theory for composite laminates , 1995 .

[2]  E. Reissner,et al.  Reflections on the Theory of Elastic Plates , 1985 .

[3]  H. Hencky,et al.  Über die Berücksichtigung der Schubverzerrung in ebenen Platten , 1947 .

[4]  T. K. Varadan,et al.  Refinement of higher-order laminated plate theories , 1989 .

[5]  A. W. Leissa,et al.  Closure to ``Discussions of `Analysis of Heterogeneous Anisotropic Plates''' (1970, ASME J. Appl. Mech., 37, pp. 237-238) , 1970 .

[6]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[7]  J. N. Reddy,et al.  Bending, vibration and stability of arall® laminates using a generalized laminate plate theory , 1991 .

[8]  M. Levinson,et al.  An accurate, simple theory of the statics and dynamics of elastic plates , 1980 .

[9]  A. Noor,et al.  Assessment of Computational Models for Multilayered Composite Shells , 1990 .

[10]  S. T. Chow,et al.  Bidirectional bending of laminated composite plates using an improved zig-zag model , 1994 .

[11]  Wolfgang Kissing,et al.  Dünnwandige Stab- und Stabschalentragwerke , 1994 .

[12]  A. Noor,et al.  Assessment of computational models for sandwich panels and shells , 1995 .

[13]  K. Rohwer,et al.  Application of higher order theories to the bending analysis of layered composite plates , 1992 .

[14]  F. B. Hildebrand,et al.  Notes on the foundations of the theory of small displacements of orthotropic shells , 1949 .

[15]  J. N. Reddy,et al.  Modeling of delamination in composite laminates using a layer-wise plate theory , 1991 .

[16]  H. Altenbach Modelling of Viscoelastic Behaviour of Plates , 1991 .

[17]  M. Touratier,et al.  An efficient standard plate theory , 1991 .

[18]  Gennady M. Kulikov,et al.  General direction of development of the theory of multilayered shells , 1988 .

[19]  K. Rohwer Computational models for laminated composites , 1993 .

[20]  Stefanos Vlachoutsis,et al.  Shear correction factors for plates and shells , 1992 .

[21]  J. N. Reddy,et al.  Analysis of laminated composite plates using a higher‐order shear deformation theory , 1985 .

[22]  J. N. Reddy,et al.  A plate bending element based on a generalized laminate plate theory , 1988 .

[23]  G. Kirchhoff,et al.  Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. , 1850 .

[24]  Gerda Preußer Eine systematische Herleitung verbesserter Plattengleichungen , 1984 .

[25]  J. N. Reddy,et al.  An accurate determination of stresses in thick laminates using a generalized plate theory , 1990 .

[26]  C. Sun,et al.  A higher order theory for extensional motion of laminated composites , 1973 .

[27]  Norman F. Knight,et al.  A refined first-order shear-deformation theory and its justification by plane strain bending problem of laminated plates , 1996 .

[28]  S. T. Mau,et al.  A Refined Laminated Plate Theory , 1973 .

[29]  T. Lewiński On displacement-based theories of sandwich plates with soft core , 1991 .

[30]  J. Reddy,et al.  THEORIES AND COMPUTATIONAL MODELS FOR COMPOSITE LAMINATES , 1994 .

[31]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[32]  K. H. Lee,et al.  An improved zig-zag model for the bending of laminated composite shells , 1990 .

[33]  Maenghyo Cho,et al.  Efficient higher order composite plate theory for general lamination configurations , 1993 .

[34]  E. Reissner Note on the effect of transverse shear deformation in laminated anisotropic plates , 1979 .

[35]  Pavel A. Zhilin,et al.  Mechanics of deformable directed surfaces , 1976 .

[36]  E. Reissner,et al.  On bending of elastic plates , 1947 .

[37]  Ahmed K. Noor,et al.  Assessment of Shear Deformation Theories for Multilayered Composite Plates , 1989 .

[38]  Dahsin Liu,et al.  An Interlaminar Shear Stress Continuity Theory for Both Thin and Thick Composite Laminates , 1992 .

[39]  J. N. Reddy,et al.  On the Generalization of Displacement-Based Laminate Theories , 1989 .

[40]  Hidenori Murakami,et al.  Laminated Composite Plate Theory With Improved In-Plane Responses , 1986 .

[41]  J. Reddy An evaluation of equivalent-single-layer and layerwise theories of composite laminates , 1993 .

[42]  T. Lewiński,et al.  On refined plate models based on kinematical assumptions , 1987 .

[43]  Dewey H. Hodges,et al.  On asymptotically correct linear laminated plate theory , 1996 .

[44]  A. W. Leissa,et al.  Analysis of Heterogeneous Anisotropic Plates , 1969 .

[45]  Tomasz Lewiński,et al.  On the twelfth−order theory of elastic plates , 1990 .

[46]  E. Reissner,et al.  Bending and Stretching of Certain Types of Heterogeneous Aeolotropic Elastic Plates , 1961 .

[47]  J. N. Reddy,et al.  Modelling of thick composites using a layerwise laminate theory , 1993 .

[48]  Ahmed K. Noor,et al.  Stress and free vibration analyses of multilayered composite plates , 1989 .

[49]  E. Berto´ti,et al.  Stress-based hierarchic models for laminated composites , 1995 .

[50]  R. Christensen,et al.  A HIGH-ORDER THEORY OF PLATE DEFORMATION, PART 1: HOMOGENEOUS PLATES , 1977 .

[51]  R. Kienzler,et al.  Eine Erweiterung der klassischen Schalentheorie; der Einfluß von Dickenverzerrungen und Querschnittsverwölbungen , 1982 .

[52]  E. Reissner ON THE THEORY OF BENDING OF ELASTIC PLATES , 1944 .

[53]  J. Reddy,et al.  Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory , 1985 .

[54]  Dewey H. Hodges,et al.  On the strain energy of laminated composite plates , 1991 .

[55]  J. Whitney,et al.  Shear Correction Factors for Orthotropic Laminates Under Static Load , 1973 .

[56]  J. N. Reddy,et al.  A refined nonlinear theory of plates with transverse shear deformation , 1984 .

[57]  E. Reissner,et al.  A Consistent Treatment of Transverse Shear Deformations in Laminated Anisotropic Plates , 1972 .

[58]  J. N. Reddy,et al.  A generalization of two-dimensional theories of laminated composite plates† , 1987 .

[59]  E. Reissner The effect of transverse shear deformation on the bending of elastic plates , 1945 .

[60]  Norman F. Knight,et al.  Restatement of first-order shear-deformation theory for laminated plates , 1997 .

[61]  Tarun Kant,et al.  Higher-order shear deformable theories for flexure of sandwich plates—Finite element evaluations , 1988 .

[62]  Ahmed K. Noor,et al.  Assessment of computational models for multilayered anisotropic plates , 1990 .

[63]  Dewey H. Hodges,et al.  Application of the variational-asymptotical method to laminated composite plates , 1993 .

[64]  Tarun Kant,et al.  A critical review and some results of recently developed refined theories of fiber-reinforced laminated composites and sandwiches , 1993 .

[65]  J. Whitney,et al.  The Effect of Transverse Shear Deformation on the Bending of Laminated Plates , 1969 .

[66]  Ahmed K. Noor,et al.  Computational Models for Sandwich Panels and Shells , 1996 .

[67]  T. Chow,et al.  On the Propagation of Flexural Waves in an Orthotropic Laminated Plate and Its Response to an Impulsive Load , 1971 .

[68]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[69]  K. H. Lee,et al.  A predictor-corrector zig-zag model for the bending of laminated composite plates , 1996 .