A multiscale model of adaptation and spatial vision for realistic image display

In this paper we develop a computational model of adaptation and spatial vision for realistic tone reproduction. The model is based on a multiscale representation of pattern, luminance, and color processing in the human visual system. We incorporate the model into a tone reproduction operator that maps the vast ranges of radiances found in real and synthetic scenes into the small fixed ranges available on conventional display devices such as CRT’s and printers. The model allows the operator to address the two major problems in realistic tone reproduction: wide absolute range and high dynamic range scenes can be displayed; and the displayed images match our perceptions of the scenes at both threshold and suprathreshold levels to the degree possible given a particular display device. Although in this paper we apply our visual model to the tone reproduction problem, the model is general and can be usefully applied to image quality metrics, image compression methods, and perceptually-based image synthesis algorithms. CR Categories: I.3.0 [Computer Graphics]: General;

[1]  M. A. Bouman,et al.  Spatiotemporal chromaticity discrimination. , 1969, Journal of the Optical Society of America.

[2]  A. Gilchrist Perceived lightness depends on perceived spatial arrangement. , 1977, Science.

[3]  Donald P. Greenberg,et al.  A model of visual adaptation for realistic image synthesis , 1996, SIGGRAPH.

[4]  Christine D. Piatko,et al.  A Visibility Matching Tone Reproduction Operator for High Dynamic Range Scenes , 1997, IEEE Trans. Vis. Comput. Graph..

[5]  C. Enroth-Cugell,et al.  Chapter 9 Visual adaptation and retinal gain controls , 1984 .

[6]  L. Kaufman,et al.  Handbook of perception and human performance , 1986 .

[7]  S S Stevens,et al.  To Honor Fechner and Repeal His Law: A power function, not a log function, describes the operating characteristic of a sensory system. , 1961, Science.

[8]  Donald P. Greenberg,et al.  Physically-based glare effects for digital images , 1995, SIGGRAPH.

[9]  K. Mullen,et al.  The spatial tuning of chromatic mechanisms identified by simultaneous masking , 1994, Vision Research.

[10]  J. Cronly-Dillon,et al.  Vision and visual dysfunction. , 1994, Journal of cognitive neuroscience.

[11]  Kenneth Chiu,et al.  Spatially Nonuniform Scaling Functions for High Contrast Images , 1993 .

[12]  H. Barlow Dark and Light Adaptation: Psychophysics , 1972 .

[13]  D. Field,et al.  What's constant in contrast constancy? The effects of scaling on the perceived contrast of bandpass patterns , 1995, Vision Research.

[14]  Christine D. Piatko,et al.  A visibility matching tone reproduction operator for high dynamic range scenes , 1997, SIGGRAPH '97.

[15]  Jeffrey Lubin,et al.  A VISUAL DISCRIMINATION MODEL FOR IMAGING SYSTEM DESIGN AND EVALUATION , 1995 .

[16]  Zia-ur Rahman,et al.  Retinex Image Processing: Improved Fidelity To Direct Visual Observation , 1996, CIC.

[17]  Holly E. Rushmeier,et al.  Tone reproduction for realistic images , 1993, IEEE Computer Graphics and Applications.

[18]  M. Sanders Handbook of Sensory Physiology , 1975 .

[19]  J. Mollon Color vision. , 1982, Annual review of psychology.

[20]  M. Miranda,et al.  [The eye as an optical instrument]. , 1978, Boletin de la Asociacion Medica de Puerto Rico.

[21]  Michael H. Brill,et al.  Color appearance models , 1998 .

[22]  E. Adelson Perceptual organization and the judgment of brightness. , 1993, Science.

[23]  J Jobson Daniel,et al.  Retinex Image Processing: Improved Fidelity to Direct Visual Observation , 1996 .

[24]  M. Georgeson,et al.  Contrast constancy: deblurring in human vision by spatial frequency channels. , 1975, The Journal of physiology.

[25]  Greg Ward,et al.  A Contrast-Based Scalefactor for Luminance Display , 1994, Graphics Gems.

[26]  H. Bourgeois,et al.  [Contrast sensitivity]. , 1987, L'Annee therapeutique et clinique en ophtalmologie.

[27]  M. A. Bouman,et al.  Spatial Modulation Transfer in the Human Eye , 1967 .

[28]  Jessica K. Hodgins,et al.  Display of high contrast images using models of visual adaptation , 1997, SIGGRAPH '97.

[29]  K. Mullen The contrast sensitivity of human colour vision to red‐green and blue‐yellow chromatic gratings. , 1985, The Journal of physiology.

[30]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[31]  E. Peli Contrast in complex images. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[32]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[33]  J A Solomon,et al.  Model of visual contrast gain control and pattern masking. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.