Metallic conduction at organic charge-transfer interfaces.

The electronic properties of interfaces between two different solids can differ strikingly from those of the constituent materials. For instance, metallic conductivity-and even superconductivity-have recently been discovered at interfaces formed by insulating transition-metal oxides. Here, we investigate interfaces between crystals of conjugated organic molecules, which are large-gap undoped semiconductors, that is, essentially insulators. We find that highly conducting interfaces can be realized with resistivity ranging from 1 to 30 kohms per square, and that, for the best samples, the temperature dependence of the conductivity is metallic. The observed electrical conduction originates from a large transfer of charge between the two crystals that takes place at the interface, on a molecular scale. As the interface assembly process is simple and can be applied to crystals of virtually any conjugated molecule, the conducting interfaces described here represent the first examples of a new class of electronic systems.

[1]  A. Aleshin,et al.  Mobility studies of field-effect transistor structures basedon anthracene single crystals , 2004 .

[2]  H. Schulz,et al.  Organic conductors and superconductors , 1982 .

[3]  A. Morpurgo,et al.  Current saturation and Coulomb interactions in organic single-crystal transistors , 2007, 0710.2845.

[4]  A. Morpurgo,et al.  Reproducible low contact resistance in rubrene single-crystal field-effect transistors with nickel electrodes , 2005, cond-mat/0511333.

[5]  J. Rogers,et al.  Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals , 2004, Science.

[6]  B. Batlogg,et al.  Field-induced charge transport at the surface of pentacene single crystals: A method to study charge dynamics of two-dimensional electron systems in organic crystals , 2003 .

[7]  V. Podzorov,et al.  Electronic functionalization of the surface of organic semiconductors with self-assembled monolayers. , 2007, Nature materials.

[8]  A. J. Muller,et al.  Conducting films of C60 and C70 by alkali-metal doping , 1991, Nature.

[9]  D. Murphy,et al.  Superconductivity at 18 K in potassium-doped C60 , 1991, Nature.

[10]  A. Morpurgo,et al.  Tunable Fröhlich polarons in organic single-crystal transistors , 2006, Nature materials.

[11]  T. Kistenmacher,et al.  The crystal structure of the 1:1 radical cation–radical anion salt of 2,2'-bis-l,3-dithiole (TTF) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) , 1974 .

[12]  W. R. Salaneck,et al.  Field-Effect Transistor Made with a Sexithiophene Single Crystal , 1996 .

[13]  J. Rogers,et al.  Nanoscale Surface Morphology and Rectifying Behavior of a Bulk Single‐Crystal Organic Semiconductor , 2006 .

[14]  J. Farges,et al.  Electrical properties of powdered mixtures of pure TCNQ and TTF : Evidence for a strong solid-state charge-transfer reaction , 1986 .

[15]  I. Hulea,et al.  Bias-dependent contact resistance in rubrene single-crystal field-effect transistors , 2007, cond-mat/0703029.

[16]  M. F. Craciun,et al.  Ambipolar Cu- and Fe-phthalocyanine single-crystal field-effect transistors , 2005 .

[17]  C. K. Chiang,et al.  Electrical Conductivity in Doped Polyacetylene. , 1977 .

[18]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[19]  J. Takeya,et al.  Gate dielectric materials for high-mobility organic transistors of molecular semiconductor crystals , 2007 .

[20]  U Zeitler,et al.  Magnetic effects at the interface between non-magnetic oxides. , 2007, Nature materials.

[21]  Patrick A. Lee,et al.  Disordered Electronic Systems , 1985, The Quantum Nature of Materials.

[22]  N. Reyren,et al.  Superconducting Interfaces Between Insulating Oxides , 2007, Science.

[23]  Philip Coppens,et al.  Crystal and molecular structure of the aromatic sulphur compound 2,2′-bi-1,3-dithiole. Evidence for d-orbital participation in bonding , 1971 .

[24]  John P. Ferraris,et al.  Electron transfer in a new highly conducting donor-acceptor complex , 1973 .

[25]  Organic superconductors , 2003, cond-mat/0302157.

[26]  J. Rogers,et al.  High‐Performance n‐ and p‐Type Single‐Crystal Organic Transistors with Free‐Space Gate Dielectrics , 2004 .

[27]  T. M. Klapwijk,et al.  Field-effect transistors on tetracene single crystals , 2003 .

[28]  Zhenan Bao,et al.  Organic single-crystal field-effect transistors , 2007 .

[29]  Michael E. Gershenson,et al.  Colloquium : Electronic transport in single-crystal organic transistors , 2006 .

[30]  T. Shimoda,et al.  Control of carrier density by self-assembled monolayers in organic field-effect transistors , 2004, Nature materials.

[31]  D. Jérome Organic conductors: from charge density wave TTF-TCNQ to superconducting (TMTSF)2PF6. , 2004, Chemical reviews.

[32]  K. Trueblood,et al.  The crystal and molecular structure of 7,7,8,8‐tetracyanoquinodimethane , 1965 .

[33]  Yoshihiro Iwasa,et al.  Ambipolar organic field-effect transistors based on rubrene single crystals , 2006 .

[34]  K. Miki,et al.  Orientation control of pentacene molecules and transport anisotropy of the thin film transistors by photoaligned polyimide film , 2007 .

[35]  Theo Siegrist,et al.  Physical vapor growth of organic semiconductors , 1998 .

[36]  E. A. Silinsh,et al.  Organic Molecular Crystals , 1980 .