Uncertainty Quantification in MD Simulations. Part II: Bayesian Inference of Force-Field Parameters

This paper explores the inference of small-scale, atomistic parameters, based on the specification of large, or macroscale, observables. Specifically, we focus on estimating a set of force-field parameters for the four-site, TIP4P, water model, based on a synthetic problem involving isothermal, isobaric molecular dynamics (MD) simulations of water at ambient conditions. We exploit the polynomial chaos (PC) expansions developed in Part I as surrogate representations of three macroscale observables, namely density, self-diffusion, and enthalpy, as a function of the force-field parameters. We analyze and discuss the use of two different PC representations in a Bayesian framework for the inference of atomistic parameters, based on synthetic observations of three macroscale observables. The first surrogate is a deterministic PC representation, constructed in Part I using nonintrusive spectral projection (NISP). An alternative strategy exploits a nondeterministic PC representation obtained using Bayesian infere...

[1]  Yalchin Efendiev,et al.  Preconditioning Markov Chain Monte Carlo Simulations Using Coarse-Scale Models , 2006, SIAM J. Sci. Comput..

[2]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[3]  F. RIZZI,et al.  Uncertainty Quantification in MD Simulations. Part I: Forward Propagation , 2012, Multiscale Model. Simul..

[4]  A. Wallqvist,et al.  Molecular Models of Water: Derivation and Description , 2007 .

[5]  Bertrand Guillot,et al.  A reappraisal of what we have learnt during three decades of computer simulations on water , 2002 .

[6]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[7]  Michael W. Mahoney,et al.  A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions , 2000 .

[8]  A. Kalinichev Molecular Simulations of Liquid and Supercritical Water: Thermodynamics, Structure, and Hydrogen Bonding , 2001 .

[9]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[10]  C. Andrieu,et al.  On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.

[11]  Hans W. Horn,et al.  Characterization of the TIP4P-Ew water model: vapor pressure and boiling point. , 2005, The Journal of chemical physics.

[12]  Greg L. Hura,et al.  Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. , 2004, The Journal of chemical physics.

[13]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[14]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[15]  Michael L. Klein,et al.  Intermolecular potential functions and the properties of water , 1982 .

[16]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[17]  Y. Marzouk,et al.  Uncertainty quantification in chemical systems , 2009 .

[18]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[19]  A. O'Hagan,et al.  Bayesian inference for the uncertainty distribution of computer model outputs , 2002 .

[20]  Nicholas Zabaras,et al.  Using Bayesian statistics in the estimation of heat source in radiation , 2005 .

[21]  Julian Tirado-Rives,et al.  Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[23]  A. O'Hagan,et al.  Curve Fitting and Optimal Design for Prediction , 1978 .

[24]  A. O'Hagan,et al.  Probabilistic sensitivity analysis of complex models: a Bayesian approach , 2004 .

[25]  Francesco Rizzi Uncertainty quantification in molecular dynamics , 2012 .

[26]  A. OHagan,et al.  Bayesian analysis of computer code outputs: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[27]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[28]  Khachik Sargsyan,et al.  Bayesian Inference of Spectral Expansions for Predictability Assessment in Stochastic Reaction Networks , 2009 .

[29]  Pascal Pernot,et al.  Statistical approaches to forcefield calibration and prediction uncertainty in molecular simulation. , 2011, The Journal of chemical physics.

[30]  Nicholas Zabaras,et al.  An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method , 2009 .

[31]  C. Vega,et al.  What ice can teach us about water interactions: a critical comparison of the performance of different water models. , 2009, Faraday discussions.

[32]  John Skilling,et al.  Data analysis : a Bayesian tutorial , 1996 .

[33]  N. Wiener The Homogeneous Chaos , 1938 .

[34]  J. Rosenthal,et al.  On adaptive Markov chain Monte Carlo algorithms , 2005 .

[35]  Anthony O'Hagan,et al.  Diagnostics for Gaussian Process Emulators , 2009, Technometrics.

[36]  J. Rosenthal,et al.  Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms , 2007, Journal of Applied Probability.

[37]  Krzysztof Szalewicz,et al.  Towards the complete understanding of water by a first-principles computational approach , 2009 .