In vitro multimerization and membrane insertion of bacterial outer membrane secretin PulD.

[1]  J. Tommassen,et al.  Functioning of outer membrane protein assembly factor Omp85 requires a single POTRA domain , 2007, EMBO reports.

[2]  P. Alzari,et al.  Remodeling a DNA-binding protein as a specific in vivo inhibitor of bacterial secretin PulD , 2007, Proceedings of the National Academy of Sciences.

[3]  V. Dötsch,et al.  Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems , 2007, Nature Protocols.

[4]  E. Bamberg,et al.  Functional cell-free synthesis of a seven helix membrane protein: in situ insertion of bacteriorhodopsin into liposomes. , 2007, Journal of molecular biology.

[5]  M. Chami,et al.  YaeT‐independent multimerization and outer membrane association of secretin PulD , 2007, Molecular microbiology.

[6]  J. Popot,et al.  Fluorinated and hemifluorinated surfactants as alternatives to detergents for membrane protein cell-free synthesis. , 2007, The Biochemical journal.

[7]  H. Seifert,et al.  pilQ Missense Mutations Have Diverse Effects on PilQ Multimer Formation, Piliation, and Pilus Function in Neisseria gonorrhoeae , 2007, Journal of bacteriology.

[8]  A. Engel,et al.  Bacterial outer membrane secretin PulD assembles and inserts into the inner membrane in the absence of its pilotin , 2006, The EMBO journal.

[9]  J. Tommassen,et al.  Assembly Factor Omp85 Recognizes Its Outer Membrane Protein Substrates by a Species-Specific C-Terminal Motif , 2006, PLoS biology.

[10]  V. Dötsch,et al.  Cell‐free expression as an emerging technique for the large scale production of integral membrane protein , 2006, The FEBS journal.

[11]  A. Pugsley,et al.  Secretins take shape , 2006, Molecular microbiology.

[12]  Volker Dötsch,et al.  Evaluation of detergents for the soluble expression of α‐helical and β‐barrel‐type integral membrane proteins by a preparative scale individual cell‐free expression system , 2005 .

[13]  A. Engel,et al.  Structural Insights into the Secretin PulD and Its Trypsin-resistant Core* , 2005, Journal of Biological Chemistry.

[14]  H. Seifert,et al.  The penC mutation conferring antibiotic resistance in Neisseria gonorrhoeae arises from a mutation in the PilQ secretin that interferes with multimer stability , 2005, Molecular microbiology.

[15]  Daniel Kahne,et al.  Identification of a Multicomponent Complex Required for Outer Membrane Biogenesis in Escherichia coli , 2005, Cell.

[16]  A. Pugsley,et al.  Depletion of Apolipoprotein N-Acyltransferase Causes Mislocalization of Outer Membrane Lipoproteins in Escherichia coli* , 2005, Journal of Biological Chemistry.

[17]  T. Marlovits,et al.  Structural Insights into the Assembly of the Type III Secretion Needle Complex , 2004, Science.

[18]  R. Dalbey,et al.  Preface for the special issue protein export/secretion in bacteria , 2004 .

[19]  X. Nassif,et al.  Type IV pilus biogenesis in Neisseria meningitidis: PilW is involved in a step occurring after pilus assembly, essential for fibre stability and function , 2004, Molecular microbiology.

[20]  J. Betton,et al.  Cell-free synthesis of a functional ion channel in the absence of a membrane and in the presence of detergent. , 2004, Biochemistry.

[21]  J. Derrick,et al.  Structure of the Neisseria meningitidis Outer Membrane PilQ Secretin Complex at 12 Å Resolution* , 2004, Journal of Biological Chemistry.

[22]  S. Matsuyama,et al.  Sorting of lipoproteins to the outer membrane in E. coli. , 2004, Biochimica et biophysica acta.

[23]  J. Tommassen,et al.  Structure and Electrophysiological Properties of the YscC Secretin from the Type III Secretion System of Yersinia enterocolitica , 2004, Journal of bacteriology.

[24]  J. Tommassen,et al.  Omp85, an evolutionarily conserved bacterial protein involved in outer-membrane-protein assembly. , 2004, Research in microbiology.

[25]  T. Danieli,et al.  In vitro synthesis of fully functional EmrE, a multidrug transporter, and study of its oligomeric state. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  George Georgiou,et al.  Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Derrick,et al.  Three-Dimensional Structure of the Neisseria meningitidis Secretin PilQ Determined from Negative-Stain Transmission Electron Microscopy , 2003, Journal of bacteriology.

[28]  S. Darst,et al.  Structure of the filamentous phage pIV multimer by cryo-electron microscopy. , 2003, Journal of molecular biology.

[29]  J. Tommassen,et al.  Role of a Highly Conserved Bacterial Protein in Outer Membrane Protein Assembly , 2003, Science.

[30]  J. Killian,et al.  Components required for membrane assembly of newly synthesized K+ channel KcsA , 2002, FEBS letters.

[31]  H. Stahlberg,et al.  Domain structure of secretin PulD revealed by limited proteolysis and electron microscopy , 2000, The EMBO journal.

[32]  K. Hardie,et al.  Genetic Dissection of the Outer Membrane Secretin PulD: Are There Distinct Domains for Multimerization and Secretion Specificity? , 1999, Journal of bacteriology.

[33]  H. Saibil,et al.  Secretin PulD: association with pilot PulS, structure, and ion-conducting channel formation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[34]  V. Shevchik,et al.  Functional characterization of the Erwinia chrysanthemi OutS protein, an element of a type II secretion system. , 1998, Microbiology.

[35]  K. Hardie,et al.  The C‐terminal domain of the secretin PulD contains the binding site for its cognate chaperone, PulS, and confers PulS dependence on pIVf1 function , 1997, Molecular microbiology.

[36]  K. Hardie,et al.  The secretin‐specific, chaperone‐like protein of the general secretory pathway: separation of proteolytic protection and piloting functions , 1996, Molecular microbiology.

[37]  J. Tommassen,et al.  In Vitro Insertion and Assembly of Outer Membrane Protein PhoE of Escherichia coli K-12 into the Outer Membrane , 1996, The Journal of Biological Chemistry.

[38]  S. Lory,et al.  Insertion of an outer membrane protein in Escherichia coli requires a chaperone‐like protein. , 1996, The EMBO journal.

[39]  H. Nikaido,et al.  Trimerization of an in vitro synthesized OmpF porin of Escherichia coli outer membrane. , 1991, The Journal of biological chemistry.

[40]  A. Danchin,et al.  Isolation and characterization of catalytic and calmodulin-binding domains of Bordetella pertussis adenylate cyclase. , 1991, European journal of biochemistry.

[41]  C. d’Enfert,et al.  Protein secretion by gram-negative bacteria. Characterization of two membrane proteins required for pullulanase secretion by Escherichia coli K-12. , 1989, The Journal of biological chemistry.

[42]  C. d’Enfert,et al.  Klebsiella pneumoniae pulS gene encodes an outer membrane lipoprotein required for pullulanase secretion , 1989, Journal of bacteriology.

[43]  C. d’Enfert,et al.  Cloning and expression in Escherichia coli of the Klebsiella pneumoniae genes for production, surface localization and secretion of the lipoprotein pullulanase. , 1987, The EMBO journal.

[44]  C. d’Enfert,et al.  Characterization and expression of the structural gene for pullulanase, a maltose-inducible secreted protein of Klebsiella pneumoniae , 1985, Journal of bacteriology.

[45]  A. L. Koch The biophysics of the gram-negative periplasmic space. , 1998, Critical reviews in microbiology.

[46]  Jeffrey H. Miller A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Rela , 1992 .