Early suppression of immune response pathways characterizes children with prediabetes in genome-wide gene expression profiling.

[1]  J. Pers,et al.  Epigenetics and autoimmunity. , 2010, Journal of autoimmunity.

[2]  J. Ilonen,et al.  Interplay between PTPN22 C1858T polymorphism and cow's milk formula exposure in type 1 diabetes. , 2009, Journal of autoimmunity.

[3]  Purushottam W. Laud,et al.  Apoptosis of CD4+CD25high T Cells in Type 1 Diabetes May Be Partially Mediated by IL-2 Deprivation , 2009, PloS one.

[4]  B. Richardson,et al.  The genetics and epigenetics of autoimmune diseases. , 2009, Journal of autoimmunity.

[5]  L. Elghazi,et al.  Akt and PTEN: β-cell mass and pancreas plasticity , 2009, Trends in Endocrinology & Metabolism.

[6]  Helen Schuilenburg,et al.  Genome-wide association study and meta-analysis finds over 40 loci affect risk of type 1 diabetes , 2009, Nature Genetics.

[7]  J. Todd,et al.  Rare Variants of IFIH1, a Gene Implicated in Antiviral Responses, Protect Against Type 1 Diabetes , 2009, Science.

[8]  N. Schork,et al.  Pathway analysis of seven common diseases assessed by genome-wide association. , 2008, Genomics.

[9]  S. Grey,et al.  A new role for an old player: do B cells unleash the self-reactive CD8+ T cell storm necessary for the development of type 1 diabetes? , 2008, Journal of autoimmunity.

[10]  G. Morahan,et al.  Type 1 diabetes: lessons for other autoimmune diseases? , 2008, Journal of autoimmunity.

[11]  G. Eisenbarth,et al.  Extreme genetic risk for type 1A diabetes in the post-genome era. , 2008, Journal of autoimmunity.

[12]  J. Ilonen,et al.  Reduced CD4+T cell activation in children with type 1 diabetes carrying the PTPN22/Lyp 620Trp variant. , 2008, Journal of autoimmunity.

[13]  Jaakko Tuomilehto,et al.  Time trends in the incidence of type 1 diabetes in Finnish children: a cohort study , 2008, The Lancet.

[14]  Z. Mollah,et al.  Abnormal NF-κB Function Characterizes Human Type 1 Diabetes Dendritic Cells and Monocytes1 , 2008, The Journal of Immunology.

[15]  M. Hessner,et al.  Identification of a Molecular Signature in Human Type 1 Diabetes Mellitus Using Serum and Functional Genomics1 , 2008, The Journal of Immunology.

[16]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[17]  Simon C. Potter,et al.  Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A , 2007, Nature.

[18]  Pall I. Olason,et al.  Integrative analysis for finding genes and networks involved in diabetes and other complex diseases , 2007, Genome Biology.

[19]  Marian Rewers,et al.  The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes , 2007, Proceedings of the National Academy of Sciences.

[20]  D. Schatz,et al.  Type 1 diabetes intervention trials 2007: where are we and where are we going? , 2007, Current opinion in endocrinology, diabetes, and obesity.

[21]  A. Barabasi,et al.  Human disease classification in the postgenomic era: A complex systems approach to human pathobiology , 2007, Molecular systems biology.

[22]  Lewis C. Cantley,et al.  AKT/PKB Signaling: Navigating Downstream , 2007, Cell.

[23]  H. Jalahej,et al.  Reduced CD4+ T-cell-specific gene expression in human type 1 diabetes mellitus. , 2007, Journal of autoimmunity.

[24]  J. Rogers,et al.  Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity , 2007, Nature Genetics.

[25]  K. Okkenhaug,et al.  Antigen receptor signalling: a distinctive role for the p110δ isoform of PI3K , 2007, Trends in immunology.

[26]  W. Hagopian,et al.  At-Risk and Recent-Onset Type 1 Diabetic Subjects Have Increased Apoptosis in the CD4+CD25+high T-Cell Fraction , 2007, PloS one.

[27]  J. Ilonen,et al.  Lymphoid tyrosine phosphatase (LYP/PTPN22) Arg620Trp variant regulates insulin autoimmunity and progression to type 1 diabetes , 2006, Diabetologia.

[28]  K. Okkenhaug,et al.  Key role of the p110delta isoform of PI3K in B-cell antigen and IL-4 receptor signaling: comparative analysis of genetic and pharmacologic interference with p110delta function in B cells. , 2006, Blood.

[29]  S. Virtanen,et al.  Environmental triggers and determinants of type 1 diabetes. , 2005, Diabetes.

[30]  Nunzio Bottini,et al.  Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant , 2005, Nature Genetics.

[31]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[32]  G. Eisenbarth,et al.  Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice , 2005, Nature.

[33]  M. Atkinson,et al.  Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes. , 2005, Diabetes.

[34]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[35]  Rainer Breitling,et al.  Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments , 2004, FEBS letters.

[36]  Roberto Mallone,et al.  GAD65-specific CD4+ T-cells with high antigen avidity are prevalent in peripheral blood of patients with type 1 diabetes. , 2004, Diabetes.

[37]  Nunzio Bottini,et al.  A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes , 2004, Nature Genetics.

[38]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[39]  Abner Louis Notkins,et al.  Immunologic and Genetic Factors in Type 1 Diabetes* , 2002, The Journal of Biological Chemistry.

[40]  K. Okkenhaug,et al.  Impaired B and T Cell Antigen Receptor Signaling in p110δ PI 3-Kinase Mutant Mice , 2002, Science.

[41]  Joshua M. Korn,et al.  The plasticity of dendritic cell responses to pathogens and their components. , 2001, Science.

[42]  Ka Yee Yeung,et al.  Validating clustering for gene expression data , 2001, Bioinform..

[43]  A. Hämäläinen,et al.  Feasibility of genetic and immunological prediction of Type I diabetes in a population-based birth cohort , 2001, Diabetologia.

[44]  T. Mustelin,et al.  Cytoskeletal protein tyrosine phosphatase PTPH1 reduces T cell antigen receptor signaling , 2000, European journal of immunology.

[45]  D. Becker,et al.  Persistent T cell anergy in human type 1 diabetes. , 1999, Journal of immunology.

[46]  J. Madrenas,et al.  T-cell anergy and altered T-cell receptor signaling: effects on autoimmune disease. , 1998, Immunology today.

[47]  Camillo Ricordi,et al.  The insulin gene is transcribed in the human thymus and transcription levels correlate with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes , 1997, Nature Genetics.

[48]  J. Todd,et al.  Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus , 1997, Nature Genetics.

[49]  C. Greenbaum,et al.  Major histocompatibility complex class I molecule expression is normal on peripheral blood lymphocytes from patients with insulin-dependent diabetes mellitus. , 1996, The Journal of clinical investigation.

[50]  K. Yamagata,et al.  Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients. , 1993, The Journal of clinical investigation.

[51]  Y. Fu,et al.  Defective major histocompatibility complex class I expression on lymphoid cells in autoimmunity. , 1993, The Journal of clinical investigation.

[52]  M. Knip,et al.  Defective HLA class II expression in monocytes of type 1 diabetic patients , 1993, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[53]  Y. Fu,et al.  Linkage of faulty major histocompatibility complex class I to autoimmune diabetes. , 1991, Science.

[54]  C. R. Kahn,et al.  Acquired defect in interleukin-2 production in patients with type I diabetes mellitus. , 1986, The New England journal of medicine.

[55]  H. Cooper,et al.  Free ribosomes and growth stimulation in human peripheral lymphocytes: Activation of free ribosomes as an essential event in growth induction , 1977 .

[56]  J. Kay,et al.  The control of protein synthesis during the stimulation of lymphocytes by phytohaemagglutinin. III. Poly(U) translation and the rate of polypeptide chain elongation. , 1975, Biochimica et biophysica acta.