Upper Maxwellian Bounds for the Spatially Homogeneous Boltzmann Equation

For the spatially homogeneous Boltzmann equation with cutoff hard potentials, it is shown that solutions remain bounded from above uniformly in time by a Maxwellian distribution, provided the initial data have a Maxwellian upper bound. The main technique is based on a comparison principle that uses a certain dissipative property of the linear Boltzmann equation. Implications of the technique to propagation of upper Maxwellian bounds in the spatially-inhomogeneous case are discussed.

[1]  Benoît Perthame,et al.  Boltzmann equation with infinite energy: renormalized solutions and distributional solutions for small initial data and initial data close to a Maxwellian , 1997 .

[2]  T. Goudon Generalized Invariant Sets for the Boltzmann Equation , 1997 .

[3]  A. Ja. Povzner,et al.  On the Boltzmann equation in the kinetic theory of gases , 1965 .

[4]  L. Evans Measure theory and fine properties of functions , 1992 .

[5]  Stéphane Mischler,et al.  On the spatially homogeneous Boltzmann equation , 1999 .

[6]  곽순섭,et al.  Generalized Functions , 2006, Theoretical and Mathematical Physics.

[7]  C. Villani Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .

[8]  Leif Arkeryd,et al.  On the Boltzmann equation , 1972 .

[9]  B. Wennberg An Example of Nonuniqueness for Solutions to the Homogeneous Boltzmann Equation , 1999 .

[10]  G. Toscani,et al.  On the Cauchy problem for the nonlinear Boltzmann equation global existence uniqueness and asymptotic stability , 1985 .

[11]  Leif Arkeryd,et al.  On the Boltzmann equation part II: The full initial value problem , 1972 .

[12]  P. Lions,et al.  Compactness in Boltzmann’s equation via Fourier integral operators and applications. III , 1994 .

[13]  P. Lions,et al.  On the Cauchy problem for Boltzmann equations: global existence and weak stability , 1989 .

[14]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[15]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[16]  Gabriella Di Blasio Differentiability of spatially homogeneous solutions of the Boltzmann equation in the non maxwellian case , 1974 .

[17]  H. Grad Principles of the Kinetic Theory of Gases , 1958 .

[18]  M. Crandall,et al.  Some relations between nonexpansive and order preserving mappings , 1980 .

[19]  O. Lanford Time evolution of large classical systems , 1975 .

[20]  R. Illner,et al.  The Boltzmann equation: Global existence for a rare gas in an infinite vacuum , 1984 .

[21]  T. Carleman,et al.  Sur la théorie de l'équation intégrodifférentielle de Boltzmann , 1933 .

[22]  M. Pulvirenti,et al.  The Boltzmann equation for weakly inhomogeneous data , 1987 .

[23]  Irene M. Gamba,et al.  Moment Inequalities and High-Energy Tails for Boltzmann Equations with Inelastic Interactions , 2004 .

[24]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[25]  A. Bobylev,et al.  Moment inequalities for the boltzmann equation and applications to spatially homogeneous problems , 1997 .

[26]  N. Bellomo,et al.  ON THE CAUCHY PROBLEM FOR THE BOLTZMANN EQUATION , 1995 .

[27]  Irene M. Gamba,et al.  On the Boltzmann Equation for Diffusively Excited Granular Media , 2004 .

[28]  Bernt Wennberg,et al.  A maxwellian lower bound for solutions to the Boltzmann equation , 1997 .

[29]  T. Elmroth Global boundedness of moments of solutions of the Boltzmann equation for forces of infinite range , 1983 .

[30]  Laurent Desvillettes,et al.  Some applications of the method of moments for the homogeneous Boltzmann and Kac equations , 1993 .

[31]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[32]  L. Arkeryd L∞ estimates for the space-homogeneous Boltzmann equation , 1983 .

[33]  T. Carleman,et al.  Problèmes mathématiques dans la théorie cinétique des gaz , 1957 .

[34]  K. Hamdache Existence in the large and asymptotic behaviour for the Boltzmann equation , 1985 .