PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium

Future cosmology space missions will concentrate on measuring the polarization of the Cosmic Microwave Background, which potentially carries invaluable information about the earliest phases of the evolution of our universe. Such ambitious projects will ultimately be limited by the sensitivity of the instrument and by the accuracy at which polarized foreground emission from our own Galaxy can be subtracted out. We present the PILOT balloon project, which aims at characterizing one of these foreground sources, the polarized continuum emission by dust in the diffuse interstellar medium. The PILOT experiment also constitutes a test-bed for using multiplexed bolometer arrays for polarization measurements. This paper presents the instrument and its expected performances. Performance measured during ground calibrations of the instrument and in flight will be described in a forthcoming paper.

[1]  A. Lazarian Magnetic fields via polarimetry: progress on grain alignment theory , 2002 .

[2]  Silvia Masi,et al.  A cryogenic waveplate rotator for polarimetry at mm and submm wavelengths , 2010, 1006.5392.

[3]  G. W. Pratt,et al.  Planck 2013 results. XI. All-sky model of thermal dust emission , 2013, 1312.1300.

[4]  P. Martin On Predicting the Polarization of Low Frequency Emission by Diffuse Interstellar Dust , 2006, astro-ph/0606430.

[5]  W. Stein Infrared radiation from interstellar grains. , 1966 .

[6]  Mark J. Devlin,et al.  The balloon-borne large-aperture submillimeter telescope for polarimetry: BLAST-Pol , 2010, Astronomical Telescopes + Instrumentation.

[7]  Giampaolo Pisano,et al.  A review of metal mesh filters , 2006, SPIE Astronomical Telescopes + Instrumentation.

[8]  J. L. Bourlot,et al.  The global dust SED: tracing the nature and evolution of dust with DustEM , 2010, 1010.2769.

[9]  G. W. Pratt,et al.  Planck intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence , 2014, 1405.0872.

[10]  P. Martin On Interstellar Grain Alignment by a Magnetic Field , 1971 .

[11]  A. Lazarian,et al.  Radiative torque alignment: essential physical processes , 2007, 0707.3645.

[12]  Christine D. Wilson,et al.  Magnetic Fields in Star-forming Molecular Clouds. I. The First Polarimetry of OMC-3 in Orion A , 1999, astro-ph/9911148.

[13]  Carl Heiles 9286 Stars: An Agglomeration of Stellar Polarization Catalogs , 2000 .

[14]  M. Halpern,et al.  Spider Optimization: Probing the Systematics of a Large-Scale B-Mode Experiment , 2007, 0710.0375.

[15]  A. Benoȋt,et al.  ARCHEOPS: a balloon experiment for measuring the cosmic microwave background anisotropies , 2001 .

[16]  D. Ward-Thompson,et al.  First Observations of the Magnetic Field Geometry in Prestellar Cores , 2000 .

[17]  J. Hough,et al.  The Efficiency of Grain Alignment in Dense Interstellar Clouds: a Reassessment of Constraints from Near-Infrared Polarization , 2007, 0711.2536.

[18]  A. Z. Dolginov,et al.  Orientation of cosmic dust grains , 1976 .

[19]  J. Weingartner,et al.  Radiative Torques on Interstellar Grains. II. Grain Alignment , 1996, astro-ph/9611149.

[20]  G. W. Pratt,et al.  Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust , 2014, 1405.0871.

[21]  Y. Longval,et al.  Characterization and performances of the primary mirror of the PILOT balloon-borne experiment , 2013 .

[22]  A. Lazarian,et al.  Tracing Magnetic Fields with Aligned Grains , 2007, 0707.0858.

[23]  Olivier Boulade,et al.  Submillimeter bolometers arrays for the PACS/Herschel spectro-photometer , 2004, SPIE Astronomical Telescopes + Instrumentation.

[24]  Laurent G. Vigroux,et al.  Filled Bolometer Arrays for Herschel/PACS , 2003, SPIE Astronomical Telescopes + Instrumentation.

[25]  Giampaolo Pisano,et al.  Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: modeling and simulation. , 2006, Applied optics.

[26]  J. Greenstein,et al.  The Polarization of Starlight by Aligned Dust Grains. , 1951 .

[27]  G. W. Pratt,et al.  Planck intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization , 2014, 1405.0874.

[28]  P. A. R. Ade,et al.  New artificial dielectric metamaterial and its application as a terahertz antireflection coating. , 2009, Applied optics.

[29]  James J. Bock,et al.  Z-Spec: a broadband millimeter-wave grating spectrometer: design, construction, and first cryogenic measurements , 2004, SPIE Astronomical Telescopes + Instrumentation.

[30]  A. Lazarian,et al.  Radiative torques: analytical model and basic properties , 2007, 0707.0886.

[31]  P. Ade,et al.  Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: experimental characterization. , 2006, Applied optics.

[32]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .

[33]  B. T. Draine,et al.  Radiative Torques on Interstellar Grains: I. Superthermal Spinup , 1996 .

[34]  C. A. Oxborrow,et al.  Planck intermediate results. XXI. Comparison of polarized thermal emission from Galactic dust at 353 GHz with interstellar polarization in the visible , 2014, 1405.0873.

[35]  S. Masi,et al.  First detection of polarization of the submillimetre diffuse galactic dust emission by Archeops , 2003, astro-ph/0306222.

[36]  Giampaolo Pisano,et al.  Thermal illuminators for far-infrared and submillimeter astronomical instruments. , 2005, Applied optics.