Languages of Dot-Depth 3/2
暂无分享,去创建一个
[1] Pascal Weil,et al. Algebraic Recognizability of Languages , 2004, MFCS.
[2] Klaus W. Wagner. Leaf Language Classes , 2004, MCU.
[3] J. Howie. COMBINATORICS ON WORDS (Encyclopedia of Mathematics and Its Applications, 17) , 1984 .
[4] Janusz A. Brzozowski,et al. Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).
[5] Christian Glaßer,et al. Decidable Hierarchies of Starfree Languages , 2000, FSTTCS.
[6] Dung T. Huynh,et al. Finite-Automaton Aperiodicity is PSPACE-Complete , 1991, Theor. Comput. Sci..
[7] Mustapha Arfi. Polynomial operations and hierarchies of concatenation (in French) , 1991 .
[8] Neil Immerman. Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..
[9] Wolfgang Thomas,et al. Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..
[10] Samuel Eilenberg. Automata, Languages and Machines, Vol. B , 1976 .
[11] Imre Simon. Factorization Forests of Finite Height , 1990, Theor. Comput. Sci..
[12] Jean-Eric Pin,et al. A variety theorem without complementation , 1995 .
[13] Jean-Éric Pin. Bridges for Concatenation Hierarchies , 1998, ICALP.
[14] Thomas Wilke,et al. Over Words, Two Variables Are as Powerful as One Quantiier Alternation: Fo 2 = 2 \ 2 , 1998 .
[15] Marcel Paul Schützenberger,et al. On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..
[16] Pascal Weil,et al. Polynomial closure and unambiguous product , 1995, Theory of Computing Systems.
[17] Dominique Perrin,et al. First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..
[18] Mustapha Arfi. Opérations polynomiales et hiérarchies de concaténation , 1991, Theor. Comput. Sci..
[19] Jean-Éric Pin,et al. Syntactic Semigroups , 1997, Handbook of Formal Languages.
[20] Heinz Schmitz. Generalized Deterministic Languages and their Automata: A Characterization of Restricted Temporal Logic , 2007 .
[21] Robert McNaughton,et al. Algebraic decision procedures for local testability , 1974, Mathematical systems theory.
[22] Howard Straubing,et al. A Generalization of the Schützenberger Product of Finite Monoids , 1981, Theor. Comput. Sci..
[23] K. Hashiguchi,et al. Representation Theorems on Regular Languages , 1983, J. Comput. Syst. Sci..
[24] Róbert Szelepcsényi. The moethod of focing for nondeterministic automata , 1987, Bull. EATCS.
[25] Mustapha Arfi. Polynomial Operations on Rational Languages , 1987, STACS.
[26] Denis Thérien,et al. Classification of Finite Monoids: The Language Approach , 1981, Theor. Comput. Sci..
[27] J. Pin,et al. THE WREATH PRODUCT PRINCIPLE FOR ORDERED SEMIGROUPS , 2002 .
[28] Dominique Perrin,et al. On the Expressive Power of Temporal Logic , 1993, J. Comput. Syst. Sci..
[29] Jacques Stern,et al. Complexity of Some Problems from the Theory of Automata , 1985, Inf. Control..
[30] Janusz A. Brzozowski,et al. Hierarchies of Aperiodic Languages , 1976, RAIRO Theor. Informatics Appl..
[31] Howard Straubing,et al. FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .
[32] Christian Choffrut,et al. Combinatorics of Words , 1997, Handbook of Formal Languages.
[33] R. McNaughton,et al. Counter-Free Automata , 1971 .
[34] Christian Glaßer. A Normalform for Classes of Concatenation Hierarchies , 1998 .
[35] Graham Higman,et al. Ordering by Divisibility in Abstract Algebras , 1952 .
[36] Heinz Schmitz,et al. Some Forbidden Patterns in Automata for Dot-Depth One Languages , 2007 .
[37] Jacques Stern,et al. Characterizations of Some Classes of Regular Events , 1985, Theor. Comput. Sci..
[38] Christian Glaßer,et al. Level 5/2 of the Straubing-Thérien Hierarchy for Two-Letter Alphabets , 2001, Developments in Language Theory.
[39] Robert Knast,et al. A Semigroup Characterization of Dot-Depth one Languages , 1983, RAIRO Theor. Informatics Appl..
[40] Christian Glaßer,et al. Languages of Dot-Depth 3/2 , 2000, STACS.
[41] Janusz A. Brzozowski,et al. The Dot-Depth Hierarchy of Star-Free Languages is Infinite , 1978, J. Comput. Syst. Sci..
[42] Jean-Éric Pin,et al. Logic, semigroups and automata on words , 1996, Annals of Mathematics and Artificial Intelligence.
[43] Howard Straubing,et al. Semigroups and Languages of Dot-Depth Two , 1988, Theor. Comput. Sci..
[44] Wolfgang Thomas. An application of the Ehrenfeucht-Fraisse game in formal language theory , 1984 .