Languages of Dot-Depth 3/2

Abstract We show that level 3/2 of the dot-depth hierarchy is decidable. More precisely, we identify a pattern  $\mathbb{B}$ such that the following holds: If F is a deterministic finite automaton that accepts L, then L belongs to level 3/2 of the dot-depth hierarchy if and only if F does not have $\mathbb{B}$ as a subgraph in its transition graph. The latter condition can be tested in nondeterministic logarithmic space.

[1]  Pascal Weil,et al.  Algebraic Recognizability of Languages , 2004, MFCS.

[2]  Klaus W. Wagner Leaf Language Classes , 2004, MCU.

[3]  J. Howie COMBINATORICS ON WORDS (Encyclopedia of Mathematics and Its Applications, 17) , 1984 .

[4]  Janusz A. Brzozowski,et al.  Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).

[5]  Christian Glaßer,et al.  Decidable Hierarchies of Starfree Languages , 2000, FSTTCS.

[6]  Dung T. Huynh,et al.  Finite-Automaton Aperiodicity is PSPACE-Complete , 1991, Theor. Comput. Sci..

[7]  Mustapha Arfi Polynomial operations and hierarchies of concatenation (in French) , 1991 .

[8]  Neil Immerman Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..

[9]  Wolfgang Thomas,et al.  Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..

[10]  Samuel Eilenberg Automata, Languages and Machines, Vol. B , 1976 .

[11]  Imre Simon Factorization Forests of Finite Height , 1990, Theor. Comput. Sci..

[12]  Jean-Eric Pin,et al.  A variety theorem without complementation , 1995 .

[13]  Jean-Éric Pin Bridges for Concatenation Hierarchies , 1998, ICALP.

[14]  Thomas Wilke,et al.  Over Words, Two Variables Are as Powerful as One Quantiier Alternation: Fo 2 = 2 \ 2 , 1998 .

[15]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[16]  Pascal Weil,et al.  Polynomial closure and unambiguous product , 1995, Theory of Computing Systems.

[17]  Dominique Perrin,et al.  First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..

[18]  Mustapha Arfi Opérations polynomiales et hiérarchies de concaténation , 1991, Theor. Comput. Sci..

[19]  Jean-Éric Pin,et al.  Syntactic Semigroups , 1997, Handbook of Formal Languages.

[20]  Heinz Schmitz Generalized Deterministic Languages and their Automata: A Characterization of Restricted Temporal Logic , 2007 .

[21]  Robert McNaughton,et al.  Algebraic decision procedures for local testability , 1974, Mathematical systems theory.

[22]  Howard Straubing,et al.  A Generalization of the Schützenberger Product of Finite Monoids , 1981, Theor. Comput. Sci..

[23]  K. Hashiguchi,et al.  Representation Theorems on Regular Languages , 1983, J. Comput. Syst. Sci..

[24]  Róbert Szelepcsényi The moethod of focing for nondeterministic automata , 1987, Bull. EATCS.

[25]  Mustapha Arfi Polynomial Operations on Rational Languages , 1987, STACS.

[26]  Denis Thérien,et al.  Classification of Finite Monoids: The Language Approach , 1981, Theor. Comput. Sci..

[27]  J. Pin,et al.  THE WREATH PRODUCT PRINCIPLE FOR ORDERED SEMIGROUPS , 2002 .

[28]  Dominique Perrin,et al.  On the Expressive Power of Temporal Logic , 1993, J. Comput. Syst. Sci..

[29]  Jacques Stern,et al.  Complexity of Some Problems from the Theory of Automata , 1985, Inf. Control..

[30]  Janusz A. Brzozowski,et al.  Hierarchies of Aperiodic Languages , 1976, RAIRO Theor. Informatics Appl..

[31]  Howard Straubing,et al.  FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .

[32]  Christian Choffrut,et al.  Combinatorics of Words , 1997, Handbook of Formal Languages.

[33]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[34]  Christian Glaßer A Normalform for Classes of Concatenation Hierarchies , 1998 .

[35]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[36]  Heinz Schmitz,et al.  Some Forbidden Patterns in Automata for Dot-Depth One Languages , 2007 .

[37]  Jacques Stern,et al.  Characterizations of Some Classes of Regular Events , 1985, Theor. Comput. Sci..

[38]  Christian Glaßer,et al.  Level 5/2 of the Straubing-Thérien Hierarchy for Two-Letter Alphabets , 2001, Developments in Language Theory.

[39]  Robert Knast,et al.  A Semigroup Characterization of Dot-Depth one Languages , 1983, RAIRO Theor. Informatics Appl..

[40]  Christian Glaßer,et al.  Languages of Dot-Depth 3/2 , 2000, STACS.

[41]  Janusz A. Brzozowski,et al.  The Dot-Depth Hierarchy of Star-Free Languages is Infinite , 1978, J. Comput. Syst. Sci..

[42]  Jean-Éric Pin,et al.  Logic, semigroups and automata on words , 1996, Annals of Mathematics and Artificial Intelligence.

[43]  Howard Straubing,et al.  Semigroups and Languages of Dot-Depth Two , 1988, Theor. Comput. Sci..

[44]  Wolfgang Thomas An application of the Ehrenfeucht-Fraisse game in formal language theory , 1984 .