Design, synthesis, molecular docking study, and antibacterial evaluation of some new fluoroquinolone analogues bearing a quinazolinone moiety

[1]  A. Sivaramakrishna,et al.  Remarkably flexible quinazolinones—synthesis and biological applications , 2020 .

[2]  Clare I. R. Chandler Current accounts of antimicrobial resistance: stabilisation, individualisation and antibiotics as infrastructure , 2019, Palgrave Communications.

[3]  Srikanth Gatadi,et al.  4(3H)-Quinazolinone derivatives: Promising antibacterial drug leads. , 2019, European journal of medicinal chemistry.

[4]  Aastha Chokshi,et al.  Global Contributors to Antibiotic Resistance , 2019, Journal of global infectious diseases.

[5]  A. Foroumadi,et al.  N-substituted piperazinyl sarafloxacin derivatives: synthesis and in vitro antibacterial evaluation , 2018, DARU Journal of Pharmaceutical Sciences.

[6]  Wei Wang,et al.  Antibiotic resistance: a rundown of a global crisis , 2018, Infection and drug resistance.

[7]  F. Gao,et al.  Recent developments of quinolone-based derivatives and their activities against Escherichia coli. , 2018, European journal of medicinal chemistry.

[8]  Olivier Michielin,et al.  SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules , 2017, Scientific Reports.

[9]  M. Yousaf,et al.  Synthesis of ciprofloxacin-based compounds: A review , 2016 .

[10]  S. Badshah,et al.  The Current Case of Quinolones: Synthetic Approaches and Antibacterial Activity , 2016, Molecules.

[11]  N. Osheroff,et al.  Mechanism of Quinolone Action and Resistance , 2014, Biochemistry.

[12]  L. Toledo-Pereyra,et al.  History of Antibiotics: From Fluoroquinolones to Daptomycin (Part 2) , 2013, Journal of investigative surgery : the official journal of the Academy of Surgical Research.

[13]  N. Osheroff,et al.  Topoisomerase IV-quinolone interactions are mediated through a water-metal ion bridge: mechanistic basis of quinolone resistance , 2013, Nucleic acids research.

[14]  Mingliang Liu,et al.  Synthesis, antimycobacterial and antibacterial activity of ciprofloxacin derivatives containing a N-substituted benzyl moiety. , 2012, Bioorganic & medicinal chemistry letters.

[15]  B. Limbago,et al.  Antibiotic resistance: how serious is the problem, and what can be done? , 2012, Clinical chemistry.

[16]  N. Osheroff,et al.  Drug interactions with Bacillus anthracis topoisomerase IV: biochemical basis for quinolone action and resistance. , 2012, Biochemistry.

[17]  Chris Morley,et al.  Open Babel: An open chemical toolbox , 2011, J. Cheminformatics.

[18]  A. Fosberry,et al.  Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance , 2010, Nature Structural &Molecular Biology.

[19]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[20]  Xilin Zhao,et al.  Quinolones: Action and Resistance Updated , 2009, Current Topics in Medicinal Chemistry.

[21]  T. Giordano,et al.  Design, synthesis and characterization of novel 2-(2,4-disubstituted-thiazole-5-yl)-3-aryl-3H-quinazoline-4-one derivatives as inhibitors of NF-kappaB and AP-1 mediated transcription activation and as potential anti-inflammatory agents. , 2009, European journal of medicinal chemistry.

[22]  Salman A. Khan,et al.  Synthesis, structure elucidation and antibacterial evaluation of new steroidal -5-en-7-thiazoloquinoxaline derivatives. , 2008, European journal of medicinal chemistry.

[23]  P. Mishra,et al.  CNS depressant and anticonvulsant activities of some novel 3-[5-substituted 1,3,4-thiadiazole-2-yl]-2-styryl quinazoline-4(3H)-ones. , 2008, European journal of medicinal chemistry.

[24]  K. Srinivasan,et al.  Synthesis and biological evaluation of some novel quinazolones , 2007 .

[25]  P. Yogeeswari,et al.  Synthesis and antimycobacterial evaluation of various 7-substituted ciprofloxacin derivatives. , 2005, Bioorganic & medicinal chemistry.

[26]  A. Shafiee,et al.  Synthesis and antibacterial activity of N-[2-(5-bromothiophen-2-yl)-2-oxoethyl] and N-[(2-5-bromothiophen-2-yl)-2-oximinoethyl] derivatives of piperazinyl quinolones. , 2005, Bioorganic & medicinal chemistry letters.

[27]  Yuyang Jiang,et al.  Synthesis and in vitro antitumor activity of 4(3H)-quinazolinone derivatives with dithiocarbamate side chains. , 2005, Bioorganic & medicinal chemistry letters.

[28]  L. Mitscher Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents. , 2005, Chemical reviews.

[29]  G. Kaatz,et al.  Structural features of piperazinyl-linked ciprofloxacin dimers required for activity against drug-resistant strains of Staphylococcus aureus. , 2003, Bioorganic & medicinal chemistry letters.

[30]  A. MacGowan,et al.  Development of the quinolones. , 2003, The Journal of antimicrobial chemotherapy.

[31]  L. Peterson Quinolone molecular structure-activity relationships: what we have learned about improving antimicrobial activity. , 2001, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[32]  Anthony Maxwell,et al.  Interaction between DNA Gyrase and Quinolones: Effects of Alanine Mutations at GyrA Subunit Residues Ser83and Asp87 , 2001, Antimicrobial Agents and Chemotherapy.

[33]  S. Kuo,et al.  Antitumor agents. Part 204: synthesis and biological evaluation of substituted 2-aryl quinazolinones. , 2001, Bioorganic & medicinal chemistry letters.

[34]  N. Osheroff,et al.  Type II topoisomerases as targets for quinolone antibacterials: turning Dr. Jekyll into Mr. Hyde. , 2001, Current pharmaceutical design.

[35]  N. Osheroff,et al.  Action of quinolones against Staphylococcus aureus topoisomerase IV: basis for DNA cleavage enhancement. , 2000, Biochemistry.

[36]  A. Bauer,et al.  Antibiotic susceptibility testing by a standardized single disk method. , 1966, American journal of clinical pathology.

[37]  K. Farrah,et al.  Fluoroquinolones for the Treatment of Urinary Tract Infection: A Review of Clinical Effectiveness, Cost-Effectiveness, and Guidelines , 2019 .

[38]  S. Arunkumar,et al.  Pharmacological evaluation of 2-substituted (1,3,4) thiadiazolo quinazolines , 2006 .

[39]  G. Amicosante,et al.  Bactericidal activity of levofloxacin and ciprofloxacin on clinical isolates of different phenotypes of Pseudomonas aeruginosa. , 2000, International journal of antimicrobial agents.