Computing probability intervals under independency constraints

Many AI researchers argue that probability theory is only capable of dealing with uncertainty in situations where a fully specified joint probability distribution is available, and conclude that it is not suitable for application in AI systems. Probability intervals, however, constitute a means for expressing incompleteness of information. We present a method for computing probability interval! for probabilities of interest from a partial specification of a joint probability distribution. Our method improves on earlier approaches by all owing for independency relation­ ships between statistical variables to be exploited .