The “natura non facit saltus” principle in Memetic computing

This paper proposes the employment of continuous probability distributions instead of step functions for adaptive coordination of the local search in fitness diversity based memetic algorithms. Two probability distributions are considered in this study: the beta and exponential distributions. These probability distributions have been tested within two memetic frameworks present in literature. Numerical results show that employment of the probability distributions can be beneficial and improve performance of the original memetic algorithms on a set of test functions without varying the balance between the evolutionary and local search components.

[1]  Raino A. E. Mäkinen,et al.  Hierarchical Evolutionary Algorithms and Noise Compensation via Adaptation , 2007, Evolutionary Computation in Dynamic and Uncertain Environments.

[2]  Jim E. Smith,et al.  Coevolving Memetic Algorithms: A Review and Progress Report , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[3]  Zbigniew Michalewicz,et al.  Parameter control in evolutionary algorithms , 1999, IEEE Trans. Evol. Comput..

[4]  Raino A. E. Mäkinen,et al.  An adaptive evolutionary algorithm with intelligent mutation local searchers for designing multidrug therapies for HIV , 2007, Applied Intelligence.

[6]  Wilfried Jakob,et al.  Towards an Adaptive Multimeme Algorithm for Parameter Optimisation Suiting the Engineers' Needs , 2006, PPSN.

[7]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[8]  Ivan Zelinka,et al.  ON STAGNATION OF THE DIFFERENTIAL EVOLUTION ALGORITHM , 2000 .

[9]  Jim Smith,et al.  A Memetic Algorithm With Self-Adaptive Local Search: TSP as a case study , 2000, GECCO.

[10]  Christian Blume,et al.  Towards a Generally Applicable Self-Adapting Hybridization of Evolutionary Algorithms , 2004, GECCO.

[11]  Andy J. Keane,et al.  Meta-Lamarckian learning in memetic algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[12]  Jürgen Teich,et al.  Systematic integration of parameterized local search into evolutionary algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[13]  A. Singh Exponential Distribution: Theory, Methods and Applications , 1996 .

[14]  Jim Smith,et al.  The Co-Evolution of Memetic Algorithms for Protein Structure Prediction , 2005 .

[15]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[16]  Ville Tirronen,et al.  A Memetic Differential Evolution in Filter Design for Defect Detection in Paper Production , 2009, EvoWorkshops.

[17]  Mark Sumner,et al.  A Fast Adaptive Memetic Algorithm for Online and Offline Control Design of PMSM Drives , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[18]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[19]  Kevin Kok Wai Wong,et al.  Classification of adaptive memetic algorithms: a comparative study , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[20]  Niko Kotilainen,et al.  An Adaptive Global-Local Memetic Algorithm to Discover Resources in P2P Networks , 2007, EvoWorkshops.

[21]  James Smith,et al.  A tutorial for competent memetic algorithms: model, taxonomy, and design issues , 2005, IEEE Transactions on Evolutionary Computation.

[22]  Ferrante Neri,et al.  An Adaptive Multimeme Algorithm for Designing HIV Multidrug Therapies , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[23]  Jim Smith,et al.  Protein structure prediction with co-evolving memetic algorithms , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[24]  Giuseppe Acciani,et al.  Prudent-Daring vs Tolerant Survivor Selection Schemes in Control Design of Electric Drives , 2006, EvoWorkshops.

[25]  David B. Fogel,et al.  An Introduction to Evolutionary Computation , 2022 .

[26]  Francisco Herrera,et al.  Real-Coded Memetic Algorithms with Crossover Hill-Climbing , 2004, Evolutionary Computation.

[27]  Edmund K. Burke,et al.  Multimeme Algorithms for Protein Structure Prediction , 2002, PPSN.

[28]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[29]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[30]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[31]  M. El-Sharkawi,et al.  Introduction to Evolutionary Computation , 2008 .

[32]  Ville Tirronen,et al.  Fitness diversity based adaptation in Multimeme Algorithms:A comparative study , 2007, 2007 IEEE Congress on Evolutionary Computation.

[33]  William E. Hart,et al.  Memetic Evolutionary Algorithms , 2005 .

[34]  Jürgen Teich,et al.  Optimizing the efficiency of parameterized local search within global search: a preliminary study , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[35]  Natalio Krasnogor,et al.  Towards Robust Memetic Algorithms , 2005 .

[36]  W. Hart Adaptive global optimization with local search , 1994 .