First-order definable retraction problems for posets and reflexive graphs

A retraction from a structure P to its substructure Q is a homomorphism from P onto Q that is the identity on Q. We present an algebraic condition which completely characterises all posets and all reflexive graphs Q with the following property: the class of all posets or reflexive graphs, respectively, that admit a retraction onto Q is first-order definable.

[1]  Ashok K. Chandra,et al.  Optimal implementation of conjunctive queries in relational data bases , 1977, STOC '77.

[2]  Reinhard Pöschel,et al.  Funktionen- und Relationenalgebren , 1979 .

[3]  Dwight Duffus,et al.  A structure theory for ordered sets , 1981, Discret. Math..

[4]  P. Hell,et al.  Absolute Retracts and Varieties of Reflexive Graphs , 1987, Canadian Journal of Mathematics.

[5]  Phokion G. Kolaitis,et al.  On the expressive power of datalog: tools and a case study , 1990, J. Comput. Syst. Sci..

[6]  John C. Mitchell,et al.  Algorithmic aspects of type inference with subtypes , 1992, POPL '92.

[7]  G. E. Bredon Topology and geometry , 1993 .

[8]  Yuri Gurevich,et al.  Datalog vs First-Order Logic , 1994, J. Comput. Syst. Sci..

[9]  Jörg Flum,et al.  Finite model theory , 1995, Perspectives in Mathematical Logic.

[10]  Jerzy Tiuryn,et al.  Satisfiability of Inequalities in a Poset , 1996, Fundam. Informaticae.

[11]  Benoît Larose,et al.  Algebraic properties and dismantlability of finite posets , 1997, Discret. Math..

[12]  László Zádori Relational Sets and Categorical Equivalence of Algebras , 1997, Int. J. Algebra Comput..

[13]  Pavol Hell,et al.  List Homomorphisms to Reflexive Graphs , 1998, J. Comb. Theory, Ser. B.

[14]  Phokion G. Kolaitis,et al.  Conjunctive-query containment and constraint satisfaction , 1998, PODS.

[15]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[16]  Martin C. Cooper,et al.  Constraints, Consistency and Closure , 1998, Artif. Intell..

[17]  Marcin Benke,et al.  Some Complexity Bounds for Subtype Inequalities , 1999, Theor. Comput. Sci..

[18]  Jaroslav Nesetril,et al.  Duality Theorems for Finite Structures (Characterising Gaps and Good Characterisations) , 2000, J. Comb. Theory, Ser. B.

[19]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[20]  Gábor Kun,et al.  Order Varieties and Monotone Retractions of Finite Posets , 2001, Order.

[21]  Phokion G. Kolaitis,et al.  Constraint Satisfaction, Bounded Treewidth, and Finite-Variable Logics , 2002, CP.

[22]  Víctor Dalmau,et al.  Constraint Satisfaction Problems in Non-deterministic Logarithmic Space , 2002, ICALP.

[23]  Benoît Larose,et al.  The Complexity of the Extendibility Problem for Finite Posets , 2003, SIAM J. Discret. Math..

[24]  Andrei A. Bulatov,et al.  Tractable conservative constraint satisfaction problems , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[25]  Andrei A. Krokhin,et al.  Solving Order Constraints in Logarithmic Space , 2003, STACS.

[26]  Tomás Feder,et al.  Homomorphism closed vs. existential positive , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[27]  Pavol Hell,et al.  Algorithmic aspects of graph homomorphisms , 2003 .

[28]  Martin Grohe,et al.  The complexity of homomorphism and constraint satisfaction problems seen from the other side , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[29]  Narayan Vikas,et al.  Compaction, Retraction, and Constraint Satisfaction , 2004, SIAM J. Comput..

[30]  Phokion G. Kolaitis,et al.  On preservation under homomorphisms and unions of conjunctive queries , 2004, PODS '04.

[31]  Albert Atserias,et al.  On digraph coloring problems and treewidth duality , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[32]  Benjamin Rossman,et al.  Existential positive types and preservation under homomorphisms , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[33]  Víctor Dalmau,et al.  Linear datalog and bounded path duality of relational structures , 2005, Log. Methods Comput. Sci..