A Dual-Population Genetic Algorithm for Adaptive Diversity Control

A variety of previous works exist on maintaining population diversity of genetic algorithms (GAs). Dual-population GA (DPGA) is a type of multipopulation GA (MPGA) that uses an additional population as a reservoir of diversity. The main population is similar to that of an ordinary GA and evolves to find good solutions. The reserve population evolves to maintain and provide diversity to the main population. While most MPGAs use migration as a means of information exchange between different populations, DPGA uses crossbreeding because the two populations have entirely different fitness functions. The reserve population cannot provide useful diversity to the main population unless the two maintain an appropriate distance. Therefore, DPGA adjusts the distance dynamically to achieve an appropriate balance between exploration and exploitation. The experimental results on various classes of problems using binary, real-valued, and order-based representations show that DPGA quite often outperforms not only the standard GAs but also other GAs having additional mechanisms of diversity preservation.

[1]  Tomoki Hamagami,et al.  A new genetic algorithm with diploid chromosomes by using probability decoding for non-stationary function optimization , 2007, 2007 IEEE International Conference on Systems, Man and Cybernetics.

[2]  Thomas Bäck,et al.  The Interaction of Mutation Rate, Selection, and Self-Adaptation Within a Genetic Algorithm , 1992, PPSN.

[3]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[4]  S. Ronald Distance functions for order-based encodings , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[5]  Goutam Chakraborty,et al.  A novel distributed genetic algorithm implementation with variable number of islands , 2007, 2007 IEEE Congress on Evolutionary Computation.

[6]  Marco Tomassini,et al.  Experimental Study of Multipopulation Parallel Genetic Programming , 2000, EuroGP.

[7]  Shengxiang Yang,et al.  PDGA: the Primal-Dual Genetic Algorithm , 2003, HIS.

[8]  Reinhard Männer,et al.  Investigation of the M-Heuristic for Optimal Mutation Probabilities , 1992, Parallel Problem Solving from Nature.

[9]  Kwang Ryel Ryu,et al.  A dual population genetic algorithm with evolving diversity , 2007, 2007 IEEE Congress on Evolutionary Computation.

[10]  Lalit M. Patnaik,et al.  Adaptive probabilities of crossover and mutation in genetic algorithms , 1994, IEEE Trans. Syst. Man Cybern..

[11]  Bruno Sareni,et al.  Fitness sharing and niching methods revisited , 1998, IEEE Trans. Evol. Comput..

[12]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[13]  Kok Cheong Wong,et al.  A New Diploid Scheme and Dominance Change Mechanism for Non-Stationary Function Optimization , 1995, ICGA.

[14]  Zbigniew Michalewicz Binary or Float , 1992 .

[15]  S. Ronald,et al.  More distance functions for order-based encodings , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[16]  Shigeyoshi Tsutsui,et al.  Forking Genetic Algorithm with Blocking and Shrinking Modes (fGA) , 1993, ICGA.

[17]  David E. Goldberg,et al.  Probabilistic Crowding: Deterministic Crowding with Probabilistic Replacement , 1999 .

[18]  L. Darrell Whitley,et al.  Evaluating Evolutionary Algorithms , 1996, Artif. Intell..

[19]  Kenneth Sörensen,et al.  Distance measures based on the edit distance for permutation-type representations , 2007, J. Heuristics.

[20]  Kwang Ryel Ryu,et al.  Crew pairing optimization by a genetic algorithm with unexpressed genes , 2006, J. Intell. Manuf..

[21]  Jie Yao,et al.  BMPGA: a bi-objective multi-population genetic algorithm for multi-modal function optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[22]  Philippe Collard,et al.  DGA: An Efficient Genetic Algorithm , 1994, ECAI.

[23]  Claudio De Stefano,et al.  On the role of population size and niche radius in fitness sharing , 2004, IEEE Transactions on Evolutionary Computation.

[24]  Mark Wineberg,et al.  Distance between Populations , 2003, GECCO.

[25]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[26]  Zbigniew Skolicki,et al.  The influence of migration sizes and intervals on island models , 2005, GECCO '05.

[27]  Yukiko Yoshida,et al.  A Diploid Genetic Algorithm for Preserving Population Diversity - pseudo-Meiosis GA , 1994, PPSN.

[28]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[29]  R. K. Ursem Multinational evolutionary algorithms , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[30]  D. Thierens Adaptive mutation rate control schemes in genetic algorithms , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[31]  Philippe Collard,et al.  Genetic operators in a dual genetic algorithm , 1995, Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence.

[32]  Georges R. Harik,et al.  Finding Multimodal Solutions Using Restricted Tournament Selection , 1995, ICGA.

[33]  Terence C. Fogarty,et al.  Varying the Probability of Mutation in the Genetic Algorithm , 1989, ICGA.

[34]  Kwang Ryel Ryu,et al.  Adjusting Population Distance for the Dual-Population Genetic Algorithm , 2007, Australian Conference on Artificial Intelligence.

[35]  Erick Cantú-Paz,et al.  Migration Policies, Selection Pressure, and Parallel Evolutionary Algorithms , 2001, J. Heuristics.

[36]  G. Rudolph On Takeover Times in Spatially Structured Populations : Array and Ring , 2001 .

[37]  Shengxiang Yang,et al.  Non-stationary problem optimization using the primal-dual genetic algorithm , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[38]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[39]  Samir W. Mahfoud Crowding and Preselection Revisited , 1992, PPSN.

[40]  Ivan Sekaj,et al.  Robust Parallel Genetic Algorithms with Re-initialisation , 2004, PPSN.

[41]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[42]  Claudio De Stefano,et al.  Where Are the Niches? Dynamic Fitness Sharing , 2007, IEEE Transactions on Evolutionary Computation.

[43]  Michael J. Shaw,et al.  Genetic algorithms with dynamic niche sharing for multimodal function optimization , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[44]  Enrique Alba,et al.  Parallelism and evolutionary algorithms , 2002, IEEE Trans. Evol. Comput..

[45]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[46]  Emma Hart,et al.  A Comparison of Dominance Mechanisms and Simple Mutation on Non-stationary Problems , 1998, PPSN.