Superplot: a graphical interface for plotting and analysing MultiNest output
暂无分享,去创建一个
[1] R. Trotta,et al. A Markov chain Monte Carlo analysis of the CMSSM , 2006, hep-ph/0602028.
[2] Farhan Feroz,et al. SuperBayeS: Supersymmetry Parameters Extraction Routines for Bayesian Statistics , 2011 .
[3] Saba Sehrish,et al. CosmoSIS: Modular cosmological parameter estimation , 2014, Astron. Comput..
[4] P. J. Green,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[5] Hiranya V. Peiris,et al. Bayesian Analysis of Inflation: Parameter Estimation for Single Field Models , 2011 .
[6] F. James. Statistical Methods in Experimental Physics , 1973 .
[7] John D. Hunter,et al. Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.
[8] P. Gregory. Bayesian Logical Data Analysis for the Physical Sciences: The how-to of Bayesian inference , 2005 .
[9] D. W. Scott,et al. Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .
[10] Eric Jones,et al. SciPy: Open Source Scientific Tools for Python , 2001 .
[11] Richard Easther,et al. Bayesian Analysis of Inflation II: Model Selection and Constraints on Reheating , 2011, 1112.0326.
[12] Antony Lewis,et al. Efficient sampling of fast and slow cosmological parameters , 2013, 1304.4473.
[13] F. Feroz,et al. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.
[14] Hiranya V. Peiris,et al. Bayesian Analysis of Inflation III: Slow Roll Reconstruction Using Model Selection , 2012, 1202.0304.
[15] S. S. Wilks. The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses , 1938 .
[16] J. Marrouche,et al. The pMSSM10 after LHC run 1 , 2015, The European physical journal. C, Particles and fields.
[17] R. Tapia,et al. Nonparametric Function Estimation, Modeling, and Simulation , 1987 .
[18] A. Lasenby,et al. polychord: next-generation nested sampling , 2015, 1506.00171.
[19] Philip C. Gregory,et al. Bayesian Logical Data Analysis for the Physical Sciences: Acknowledgements , 2005 .
[20] Fons Rademakers,et al. ROOT — An object oriented data analysis framework , 1997 .
[21] Grigor Aslanyan,et al. Cosmo++: An object-oriented C++ library for cosmology , 2013, Comput. Phys. Commun..
[22] G. Arfken. Mathematical Methods for Physicists , 1967 .
[23] David W. Scott,et al. Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.
[24] Pat Scott,et al. Pippi — Painless parsing, post-processing and plotting of posterior and likelihood samples , 2012, The European Physical Journal Plus.
[25] A. Merloni,et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.
[26] Gaël Varoquaux,et al. The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.
[27] F. Feroz,et al. Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.
[28] Andy Buckley,et al. GAMBIT: Global And Modular BSM Inference Tool , 2017 .
[29] Wes McKinney,et al. Data Structures for Statistical Computing in Python , 2010, SciPy.
[30] M. P. Hobson,et al. polychord: nested sampling for cosmology , 2015, Monthly Notices of the Royal Astronomical Society: Letters.
[31] J. Skilling. Nested sampling for general Bayesian computation , 2006 .
[32] Tim B. Swartz,et al. Bayesian Analysis of Dyadic Data , 2007 .
[33] A. Fowlie. CMSSM, naturalness and the "fine-tuning price" of the Very Large Hadron Collider , 2014, 1403.3407.
[34] Frank E. Harris,et al. Mathematical Methods for Physicists: A Comprehensive Guide , 2012 .
[35] A. Lewis,et al. Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.
[36] F. Feroz,et al. Bayes-x: a Bayesian inference tool for the analysis of X-ray observations of galaxy clusters , 2013, 1310.1885.