Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference

We introduce a new fluorescence microscopy technique that maps the axial position of a fluorophore with subnanometer precision. The interference of the emission of fluorophores in proximity to a reflecting surface results in fringes in the fluorescence spectrum that provide a unique signature of the axial position of the fluorophore. The nanometer sensitivity is demonstrated by measuring the height of a fluorescein monolayer covering a 12-nm step etched in silicon dioxide. In addition, the separation between fluorophores attached to the top or the bottom layer in a lipid bilayer film is determined. We further discuss extension of this microscopy technique to provide resolution of multiple layers spaced as closely as 10 nm for sparse systems.

[1]  Thomas A. Klar,et al.  Stimulated emission depletion microscopy with an offset depleting beam , 2001 .

[2]  P. Fromherz,et al.  Fluorescence interference-contrast microscopy of cell adhesion on oxidized silicon , 1997 .

[3]  Daniel L. Farkas,et al.  Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation , 1993, Nature.

[4]  Yunjie Tong,et al.  High-resolution spectral self-interference fluorescence microscopy , 2002, SPIE BiOS.

[5]  K. Drexhage Monomolecular Layers and Light , 1970 .

[6]  H. Taniguchi,et al.  Observation of reflection-induced light correlation in spontaneous emission in front of a mirror. , 1994, Optics letters.

[7]  Armin Lambacher,et al.  Fluorescence interference-contrast microscopy on oxidized silicon using a monomolecular dye layer , 1996 .

[8]  David A. Agard,et al.  Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses , 1995, Electronic Imaging.

[9]  S. Hell,et al.  Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[10]  F. N. Frenkiel,et al.  Waves In Layered Media , 1960 .

[11]  S. Hell,et al.  4Pi-confocal imaging in fixed biological specimens. , 1998, Biophysical journal.

[12]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[13]  Agard,et al.  I5M: 3D widefield light microscopy with better than 100 nm axial resolution , 1999, Journal of microscopy.

[14]  S W Hell,et al.  Confocal microscopy with an increased detection aperture: type-B 4Pi confocal microscopy. , 1994, Optics letters.

[15]  R. C. Thompson,et al.  Optical Waves in Layered Media , 1990 .

[16]  I. Johnstone,et al.  Maximum Entropy and the Nearly Black Object , 1992 .

[17]  J. Lucchesi,et al.  X-ray microscopic studies of the Drosophila dosage compensation complex. , 2000, Journal of structural biology.

[18]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[19]  S. Hell,et al.  Properties of a 4Pi confocal fluorescence microscope , 1992 .

[20]  K. Drexhage,et al.  IV Interaction of Light with Monomolecular Dye Layers , 1974 .

[21]  O. Heavens Thin-film Optical Filters , 1986 .

[22]  P. Fromherz,et al.  Fluorescence Interferometry of Neuronal Cell Adhesion on Microstructured Silicon , 1998 .

[23]  G. Gauglitz,et al.  Comparison of reflectometric interference spectroscopy with other instruments for label-free optical detection , 2002, Analytical and bioanalytical chemistry.

[24]  Stefan W. Hell,et al.  Focal spots of size λ/23 open up far-field florescence microscopy at 33 nm axial resolution , 2003 .

[25]  B R Masters,et al.  Two-photon excitation fluorescence microscopy. , 2000, Annual review of biomedical engineering.

[26]  S. Hell,et al.  Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution. , 2002, Physical review letters.

[27]  P. So,et al.  Lateral resolution enhancement with standing evanescent waves. , 2000, Optics letters.

[28]  Rainer Heintzmann,et al.  Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating , 1999, European Conference on Biomedical Optics.

[29]  Brent Bailey,et al.  Image processing in 3D standing-wave fluorescence microscopy , 1996, Electronic Imaging.