Chronology of Fluctuating Sea Levels Since the Triassic

Advances in sequence stratigraphy and the development of depositional models have helped explain the origin of genetically related sedimentary packages during sea level cycles. These concepts have provided the basis for the recognition of sea level events in subsurface data and in outcrops of marine sediments around the world. Knowledge of these events has led to a new generation of Mesozoic and Cenozoic global cycle charts that chronicle the history of sea level fluctuations during the past 250 million years in greater detail than was possible from seismic-stratigraphic data alone. An effort has been made to develop a realistic and accurate time scale and widely applicable chronostratigraphy and to integrate depositional sequences documented in public domain outcrop sections from various basins with this chronostratigraphic framework. A description of this approach and an account of the results, illustrated by sea level cycle charts of the Cenozoic, Cretaceous, Jurassic, and Triassic intervals, are presented.

[1]  W. Van An overview of the fundamentals of sequence stratigraphy and key definition. Sea level change-An integrated approach. , 1988 .

[2]  L. Mayer,et al.  Equatorial Pacific Seismic Reflectors as Indicators of Global Oceanographic Events , 1986, Science.

[3]  B. Clavel,et al.  Précisions stratigraphiques sur le Crétacé inférieur basal du Jura méridional , 1986 .

[4]  H. Thierstein,et al.  Late Cretaceous-Eocene nannofossil and magnetostratigraphic correlations near Gubbio, Italy , 1985 .

[5]  K. Hsü Numerical ages of Cenozoic biostratigraphic datum levels: Results of South Atlantic Leg 73 drilling: Discussion and reply , 1984 .

[6]  A. Hallam Pre-Quaternary Sea-Level Changes , 1984 .

[7]  F. Heller,et al.  Lower Jurassic magnetostratigraphy at the Breggia Gorge (Ticino, Switzerland) and Alpe Turati (Como, Italy) , 1983 .

[8]  J. LaBrecque,et al.  The magnetostratigraphy of Leg 73 sediments , 1983 .

[9]  R. Poore,et al.  Late cretaceous—cenozoic magnetostratigraphic and biostratigraphic correlations of the South Atlantic Ocean: DSDP Leg 73 , 1983 .

[10]  J. LaBrecque,et al.  DSDP Leg 73: Contributions to Paleogene stratigraphy in nomenclature, chronology and sedimentation rates , 1983 .

[11]  G. Keller,et al.  Paleoceanographic implications of Miocene deep-sea hiatuses , 1983 .

[12]  A. G. Fischer,et al.  Eocene magnetic stratigraphy at Gubbio, Italy, and its implications for Paleogene geochronology , 1983 .

[13]  Koninklijke Nederlandse Akademie van Wetenschappen. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen. Series B, Palaeontology, geology, physics, chemistry, anthropology , 1983 .

[14]  G. Keller,et al.  Widespread Miocene deep-sea hiatuses: Coincidence with periods of global cooling , 1982 .

[15]  R. Poore,et al.  Late Eocene–Oligocene magnetostratigraphy and biostratigraphy at South Atlantic DSDP Site 522 , 1982 .

[16]  W. Lowrie,et al.  Geomagnetic polarity in the early Cretaceous and Jurassic , 1982, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[17]  H. Schouten,et al.  The memory of the accreting plate boundary and the continuity of fracture zones , 1982 .

[18]  A. Watts Tectonic subsidence, flexure and global changes of sea level , 1982, Nature.

[19]  W. Lowrie,et al.  Paleogene magnetic stratigraphy in Umbrian pelagic carbonate rocks: The Contessa sections, Gubbio , 1982 .

[20]  A. Medd Nannofossil zonation of the English Middle and Upper Jurassic , 1982 .

[21]  E. Márton Late Jurassic/Early Cretaceous magnetic stratigraphy from the sümeg section, Hungary , 1982 .

[22]  J. Channell,et al.  Upper Cretaceous and Palaeogene magnetic stratigraphy and biostratigraphy from the Venetian (Southern) Alps , 1981 .

[23]  F. Amédro Actualisation des zonations d'Ammonites dans le Crétacé moyen du bassin anglo-parisien. Essai d'une zonation phylétique de l'Albien au turonien , 1981 .

[24]  C. Blome,et al.  Upper Triassic and Jurassic Pantanelliinae from California, Oregon and British Columbia , 1980 .

[25]  F. Heller,et al.  Remanent magnetization of a Pliensbachian limestone sequence at Bakonycsernye (Hungary) , 1980 .

[26]  H. Okada,et al.  Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975) , 1980 .

[27]  G. B. Dalrymple,et al.  Revised geomagnetic polarity time scale for the interval 0–5 m.y. B.P. , 1979 .

[28]  T. Davies,et al.  Sea-Level Fluctuations and Deep-Sea Sedimentation Rates , 1979, Science.

[29]  W. Lowrie,et al.  Middle and early cretaceous magnetic stratigraphy from the Cismon section, northern Italy , 1979 .

[30]  L. Burckle,et al.  Middle and Late Pliocene Diatom Datum Levels from the Central Pacific , 1979 .

[31]  S. Cande,et al.  Magnetic lineations in the Pacific Jurassic quiet zone , 1978 .

[32]  S. Hammond,et al.  Paleomagnetic and geochronologic calibration of latest oligocene to pliocene radiolarian events, Equatorial Pacific , 1978 .

[33]  W. C. Pitman Relationship between eustacy and stratigraphic sequences of passive margins , 1978 .

[34]  G. Bond Speculations on real sea-level changes and vertical motions of continents at selected times in the Cretaceous and Tertiary Periods , 1978 .

[35]  W. Berggren,et al.  Corrected age of the Pliocene/Pleistocene boundary , 1977, Nature.

[36]  W. Hay,et al.  Estimates of Cenozoic Oceanic Sedimentation Rates , 1977, Science.

[37]  S. Cande,et al.  Revised magnetic polarity time scale for Late Cretaceous and Cenozoic time , 1977 .

[38]  A. G. Fischer,et al.  Upper Cretaceous–Paleocene magnetic stratigraphy at Gubbio, Italy I. Lithostratigraphy and sedimentology , 1977 .

[39]  E. Pessagno Upper Jurassic Radiolaria and radiolarian biostratigraphy of the California Coast Ranges , 1977 .

[40]  L. Kristjánsson,et al.  Extension of the geomagnetic polarity time scale to 6.5 m.y.: K-Ar dating, geological and paleomagnetic study of a 3,500-m lava succession in western Iceland , 1977 .

[41]  H. Thierstein Mesozoic calcareous nannoplankton biostratigraphy of marine sediments , 1976 .

[42]  Roger L. Larson,et al.  A revised time scale of magnetic reversals for the Early Cretaceous and Late Jurassic , 1975 .

[43]  M. Steiner,et al.  Paleomagnetism of the Lower Triassic Moenkopi Formation , 1974 .

[44]  B. Haq Transgressions, climatic change and the diversity of calcareous nannoplankton , 1973 .

[45]  D. Pechersky,et al.  Mesozoic Palaeomagnetic Scale of the USSR , 1973, Nature.

[46]  W. C. Pitman,et al.  World-Wide Correlation of Mesozoic Magnetic Anomalies, and Its Implications , 1972 .

[47]  W. Berggren A Cenozoic time‐scale — some implications for regional geology and paleobiogeography , 1972 .

[48]  K. Creer Mesozoic Palaeomagnetic Reversal Column , 1971, Nature.

[49]  P. Burek,et al.  Mesozoic Palaeomagnetic Stratigraphy , 1971, Nature.

[50]  L. Mosher New conodont species as Triassic guide fossils , 1970 .

[51]  C. Helsley Magnetic Reversal Stratigraphy of the Lower Triassic Moenkopi Formation of Western Colorado , 1969 .

[52]  X. Pichon,et al.  Marine Magnetic Anomalies, Geomagnetic Field Reversals, and Motions of the Ocean Floor and , 1968 .

[53]  L. L. Sloss Sequences in the Cratonic Interior of North America , 1963 .

[54]  J. Kulp,et al.  Geologic Time Scale: Isotopic age determinations on rocks of known stratigraphic age define an absolute time scale for earth history. , 1961, Science.