Subliming GaN into Ordered Nanowire Arrays for Ultraviolet and Visible Nanophotonics

We report on the fabrication of ordered arrays of InGaN/GaN nanowire quantum disks by a top-down selective-area sublimation method. Using a combination of two-dimensional molecular beam epitaxy of InGaN/GaN quantum wells, electron beam lithography, and ultra-high-vacuum sublimation techniques, we demonstrate that the position, geometry, and dimensions of nanowires can be finely controlled at nano-, micro-, and macroscales. Relying on structural data, we evaluate in particular the relative sublimation rates of GaN crystal planes that drive the nanowire formation, we assess the intrinsic limits of selective area sublimation for the fabrication of NW arrays, and we evaluate the homogeneity of the process across the wafer. Because the sublimation method preserves the crystal quality of the NW material, we show that InGaN/GaN NWs present good optical properties, which can be leveraged for photonic applications in the ultraviolet and the visible range. In particular, we demonstrate that it is possible to realiz...

[1]  C. Bougerol,et al.  Structural and optical properties of InGaN/GaN nanowire heterostructures grown by PA-MBE , 2011, Nanotechnology.

[2]  H. Gotoh,et al.  Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature , 2019, Science Advances.

[3]  Neal Wostbrock,et al.  Scalable Top-Down Approach Tailored by Interferometric Lithography to Achieve Large-Area Single-Mode GaN Nanowire Laser Arrays on Sapphire Substrate. , 2018, ACS nano.

[4]  Mo Li,et al.  Single-photon emission from a further confined InGaN/GaN quantum disc via reverse-reaction growth , 2019, Quantum Eng..

[5]  S. Nakamura,et al.  Spontaneous emission of localized excitons in InGaN single and multiquantum well structures , 1996 .

[6]  J. Brault,et al.  Optical properties of In x Ga 1-x N/GaN quantum-disks obtained by selective area sublimation , 2017 .

[7]  ZnO-Nanowire-Induced Nanocavities in Photonic Crystal Disks , 2019, ACS Photonics.

[8]  J. Massies,et al.  Top-down fabrication of GaN nano-laser arrays by displacement Talbot lithography and selective area sublimation , 2019, Applied Physics Express.

[9]  J. Eymery,et al.  Flexible Photodiodes Based on Nitride Core/Shell p–n Junction Nanowires , 2016, ACS Applied Materials and Interfaces.

[10]  Yasuhiko Arakawa,et al.  Room-temperature lasing in a single nanowire with quantum dots , 2015 .

[11]  E. O’Reilly,et al.  Theory of optical gain in ideal GaN heterostructure lasers , 1995 .

[12]  Xing Dai,et al.  Flexible White Light Emitting Diodes Based on Nitride Nanowires and Nanophosphors , 2016, ACS photonics.

[13]  M. D. Birowosuto,et al.  Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform. , 2014, Nature materials.

[14]  P. Bhattacharya,et al.  Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire , 2013, Nature Communications.

[15]  Y. Arakawa,et al.  Narrow spectral linewidth of single zinc-blende GaN/AlN self-assembled quantum dots , 2013 .

[16]  J. Brault,et al.  Selective Area Sublimation: A Simple Top-down Route for GaN-Based Nanowire Fabrication. , 2016, Nano letters.

[17]  Gennady Shvets,et al.  Plasmonic Nanolaser Using Epitaxially Grown Silver Film , 2012, Science.

[18]  Baijun Zhang,et al.  GaN nanowire fabricated by selective wet-etching of GaN micro truncated-pyramid , 2015 .

[19]  On the polarity of GaN micro- and nanowires epitaxially grown on sapphire (0001) and Si(111) substrates by metal organic vapor phase epitaxy and ammonia-molecular beam epitaxy , 2011 .

[20]  Y. Arakawa,et al.  Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. , 2014, Nano letters.

[21]  S. Hersee,et al.  The controlled growth of GaN nanowires. , 2006, Nano letters.

[22]  S. Brueck,et al.  Carrier Dynamics and Electro-Optical Characterization of High-Performance GaN/InGaN Core-Shell Nanowire Light-Emitting Diodes , 2018, Scientific Reports.

[23]  Shape-Controlled Assembly of Nanowires for Photonic Elements , 2016 .

[24]  Carrier Localization Effects in InGaN/GaN Multiple-Quantum-Wells LED Nanowires: Luminescence Quantum Efficiency Improvement and “Negative” Thermal Activation Energy , 2016, Scientific reports.

[25]  J. Zúñiga-Pérez,et al.  Patterned silicon substrates: A common platform for room temperature GaN and ZnO polariton lasers , 2014, 1404.7743.

[26]  Masanobu Iwanaga,et al.  An Etching‐Free Approach Toward Large‐Scale Light‐Emitting Metasurfaces , 2019, Advanced Optical Materials.

[27]  Y. Arakawa,et al.  Spectral diffusion time scales in InGaN/GaN quantum dots , 2019, Applied Physics Letters.

[28]  Guangyuan Li,et al.  A room temperature low-threshold ultraviolet plasmonic nanolaser , 2014, Nature Communications.

[29]  T. Varghese,et al.  Position-controlled MOVPE growth and electro-optical characterization of core-shell InGaN/GaN microrod LEDs , 2016, SPIE OPTO.

[30]  B. Daudin,et al.  From nucleation to growth of catalyst-free GaN nanowires on thin AlN buffer layer , 2007 .

[31]  M. Notomi,et al.  Nanomanipulating and Tuning Ultraviolet ZnO-Nanowire-Induced Photonic Crystal Nanocavities , 2017 .

[32]  Y. Arakawa,et al.  Emission of Linearly Polarized Single Photons from Quantum Dots Contained in Nonpolar, Semipolar, and Polar Sections of Pencil-Like InGaN/GaN Nanowires , 2017 .

[33]  Isamu Akasaki,et al.  Exciton lifetimes in GaN and GaInN , 1995 .

[34]  Fabrice Semond,et al.  Determination of the refractive indices of AlN, GaN, and AlxGa1−xN grown on (111)Si substrates , 2003 .

[35]  Rhett F. Eller,et al.  Tailoring the morphology and luminescence of GaN/InGaN core–shell nanowires using bottom-up selective-area epitaxy , 2017, Nanotechnology.

[36]  Chih-Kang Shih,et al.  All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing. , 2014, Nano letters.

[37]  D. Feezell,et al.  Optical properties of Ag-coated GaN/InGaN axial and core–shell nanowire light-emitting diodes , 2015 .

[38]  H. Tan,et al.  Optically pumped room-temperature GaAs nanowire lasers , 2013, Nature Photonics.

[39]  Pallab Bhattacharya,et al.  Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon , 2011 .

[40]  Y. Arakawa,et al.  Selective-area growth of thin GaN nanowires by MOCVD , 2012 .