Weighted Generalized Fuzzy Petri Nets and Rough Sets for Knowledge Representation and Reasoning

In this paper, we consider the decision tables provided by experts in the field. We construct an algorithm for executing a highly parallel program represented by a fuzzy Petri net from a given decision table. The constructed net allows objects to be identified in decision tables to the extent that appropriate decisions can be made. Conditional attribute values given by experts are propagated by the net at maximum speed. This is done by properly organizing the net’s work. Our approach is based on rough set theory and weighted generalized fuzzy Petri nets.

[1]  Witold Pedrycz,et al.  Fuzzy control and fuzzy systems (2nd, extended ed.) , 1993 .

[2]  Zbigniew Suraj,et al.  Modified Generalized Weighted Fuzzy Petri Net in Intuitionistic Fuzzy Environment , 2016, IJCRS.

[3]  Witold Pedrycz,et al.  Approximate real‐time decision making: Concepts and rough fuzzy Petri net models , 1999 .

[4]  Zbigniew Suraj,et al.  Generalized weighted fuzzy Petri net in intuitionistic fuzzy environment , 2016, 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[5]  Janette Cardoso,et al.  Fuzziness in Petri Nets , 1998 .

[6]  Andrzej Skowron,et al.  Rough Sets: A Tutorial , 1998 .

[7]  Azlan Mohd Zain,et al.  Fuzzy Petri nets and industrial applications: a review , 2015, Artificial Intelligence Review.

[8]  Hu-Chen Liu,et al.  Fuzzy Petri nets Using Intuitionistic Fuzzy Sets and Ordered Weighted Averaging Operators , 2016, IEEE Transactions on Cybernetics.

[9]  Theresa Beaubouef,et al.  Rough Sets , 2019, Lecture Notes in Computer Science.

[10]  Yan Li,et al.  Fuzzy knowledge representation and reasoning using a generalized fuzzy petri net and a similarity measure , 2007, Soft Comput..

[11]  LiuHu-Chen,et al.  Fuzzy Petri nets for knowledge representation and reasoning , 2017 .

[12]  Andrzej Skowron,et al.  A parallel algorithm for real-time decision making: A rough set approach , 1996, Journal of Intelligent Information Systems.

[13]  Andrzej Skowron,et al.  Rudiments of rough sets , 2007, Inf. Sci..

[14]  Zbigniew Suraj,et al.  Timed Approximate Petri Nets , 2006, Fundam. Informaticae.

[15]  Shyi-Ming Chen,et al.  Weighted fuzzy reasoning using weighted fuzzy Petri nets , 2002 .

[16]  Zbigniew Suraj,et al.  Petri Nets and PNeS in Modeling and Analysis of Concurrent Systems , 2017 .

[17]  Zdzislaw Pawlak Concurrent versus sequential - the rough sets perspective , 1992, Bull. EATCS.

[18]  Zbigniew Suraj,et al.  Soft Petri Net , 2019, IJCRS.

[19]  Carl G. Looney,et al.  Fuzzy Petri nets for rule-based decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[20]  Krzysztof Pancerz,et al.  Rough Sets for Discovering Concurrent System Models from Data Tables , 2008 .

[21]  Jin-Fu Chang,et al.  Knowledge Representation Using Fuzzy Petri Nets , 1990, IEEE Trans. Knowl. Data Eng..

[22]  Aboul Ella Hassanien,et al.  Fuzzy Petri Nets and Interval Analysis Working Together , 2019 .

[23]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[24]  Andrzej Skowron,et al.  Rough sets and Boolean reasoning , 2007, Inf. Sci..

[25]  Hu-Chen Liu,et al.  Fuzzy Petri nets for knowledge representation and reasoning: A literature review , 2017, Eng. Appl. Artif. Intell..

[26]  René David,et al.  Petri nets and grafcet - tools for modelling discrete event systems , 1992 .

[27]  Andrzej Skowron,et al.  Rough sets and concurrency , 1993 .

[28]  Zbigniew Suraj A New Class of Fuzzy Petri Nets for Knowledge Representation and Reasoning , 2013, Fundam. Informaticae.

[29]  Christian Eitzinger,et al.  Triangular Norms , 2001, Künstliche Intell..

[30]  Andrzej Skowron,et al.  Synthesis of Adaptive Decision Systems from Experimental Data , 1995, SCAI.