Pseudochaotic dynamics near global periodicity
暂无分享,去创建一个
[1] R. Adler,et al. Dynamics of non-ergodic piecewise affine maps of the torus , 2001, Ergodic Theory and Dynamical Systems.
[2] George M. Zaslavsky,et al. Chaotic Dynamics and the Origin of Statistical Laws , 1999 .
[3] P. Levy. Théorie de l'addition des variables aléatoires , 1955 .
[4] G. Zaslavsky. Chaos, fractional kinetics, and anomalous transport , 2002 .
[5] Leon O. Chua,et al. Chaos and fractals from third-order digital filters , 1990, Int. J. Circuit Theory Appl..
[6] A. Goetz. Dynamics of piecewise isometries , 2000 .
[7] L. Chua,et al. On chaos in digital filters: Case b = -1 , 1993 .
[8] S. Tabachnikov. Asymptotic dynamics of the dual billiard transformation , 1996 .
[9] Global superdiffusion of weak chaos. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[10] B. Kahng. The unique ergodic measure of the symmetric piecewise toral isometry of rotation angle θ=kπ/5 is the Hausdorff measure of its singular set , 2004 .
[11] M. Kac. On the notion of recurrence in discrete stochastic processes , 1947 .
[12] F. Vivaldi,et al. Embedding dynamics for round-off errors near a periodic orbit. , 2000, Chaos.
[13] G. Zaslavsky,et al. Pseudochaotic Systems and Their Fractional Kinetics , 2003 .
[14] H. G. E. Hentschel,et al. The infinite number of generalized dimensions of fractals and strange attractors , 1983 .
[15] W. G. Chambers,et al. Lossless Digital Filter Overflow Oscillations; Approximation of Invariant Fractals , 1997 .
[16] Franco Vivaldi,et al. Recursive tiling and geometry of piecewise rotations by π/7 , 2004 .
[17] F. Vivaldi,et al. Sticky orbits in a kicked-oscillator model , 2005 .
[18] J. Meiss,et al. Resonances and transport in the sawtooth map , 1990 .
[19] F. Vivaldi,et al. Quadratic rational rotations of the torus and dual lattice maps , 2002 .
[20] P. Grassberger. Generalized dimensions of strange attractors , 1983 .
[21] Tippett,et al. Connection between recurrence-time statistics and anomalous transport. , 1991, Physical review letters.
[22] F. Vivaldi,et al. ANOMALOUS TRANSPORT IN A MODEL OF HAMILTONIAN ROUND-OFF , 1998 .
[23] S. Vaienti,et al. Numerical analysis for a discontinuous rotation of the torus. , 2003, Chaos.
[24] F. Vivaldi,et al. Global stability of a class of discontinuous dual billiards , 1987 .
[25] I. Dana. Hamiltonian transport on unstable periodic orbits , 1989 .
[26] Franco Vivaldi,et al. Quasi-periodicity, global stability and scaling in a model of Hamiltonian round-off. , 1997, Chaos.
[27] Leon O. Chua,et al. Chaos in digital filters , 1988 .
[28] E. Gutkin,et al. Dual polygonal billiards and necklace dynamics , 1992 .
[29] P. Grassberger,et al. Characterization of Strange Attractors , 1983 .
[30] S. Tabachnikov. On the Dual Billiard Problem , 1995 .
[31] J. Buzzi. Piecewise isometries have zero topological entropy , 2001, Ergodic Theory and Dynamical Systems.
[32] Leon O. Chua,et al. Fractal pattern of second-order non-linear digital filters: A new symbolic analysis , 1990, Int. J. Circuit Theory Appl..
[33] Leon O. Chua,et al. Properties of admissible symbolic sequences in a second-order digital filter with overflow non-linearity , 1993, Int. J. Circuit Theory Appl..
[34] B. Kahng,et al. Dynamics of symplectic piecewise affine elliptic rotation maps on tori , 2002, Ergodic Theory and Dynamical Systems.
[35] S. Grimes,et al. A Monte Carlo method for calculating strength functions in many-fermion systems , 1980 .
[36] G. Zaslavsky,et al. Self-similarity, renormalization, and phase space nonuniformity of Hamiltonian chaotic dynamics. , 1997, Chaos.
[37] Y. Pesin. Dimension Theory in Dynamical Systems: Contemporary Views and Applications , 1997 .
[38] C. Caramanis. What is ergodic theory , 1963 .