Expectation of quadratic forms in normal and nonnormal variables with applications

[1]  Rory A. Fisher,et al.  Moments and Product Moments of Sampling Distributions , 1930 .

[2]  Statistical Seminvariants and Their Setimates with Particular Emphasis on Their Relation to Algebraic Invariants , 1940 .

[3]  John S. White Approximate Moments for the Serial Correlation Coefficient , 1957 .

[4]  A. L. Nagar The Bias and Moment Matrix of the General k-Class Estimators of the Parameters in Simultaneous Equations , 1959 .

[5]  H. Theil,et al.  Testing the Independence of Regression Disturbances , 1961 .

[6]  J. Kadane Comparison of k-Class Estimators When the Disturbances Are Small , 1971 .

[7]  J. Magnus The moments of products of quadratic forms in normal variables , 1978 .

[8]  F. J. H. Don The Expectation of Products of Quadratic Forms in Normal Variables , 1979 .

[9]  J. Magnus,et al.  The Commutation Matrix: Some Properties and Applications , 1979 .

[10]  Jan R. Magnus,et al.  The expectation of products of quadratic forms in normal variables: The practice Statistica Neerlandica , 1979 .

[11]  A. Ullah,et al.  PROPERTIES OF SHRINKAGE ESTIMATORS IN LINEAR REGRESSION WHEN DISTURBANCES ARE NOT NORMAL , 1983 .

[12]  Jean-Marie Dufour Unbiasedness of Predictions from Estimated Autoregressions When the True Order Is Unknown , 1984 .

[13]  L. Magee Efficiency of iterative estimators in the regression model with AR(1) disturbances , 1985 .

[14]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[15]  Jan R. Magnus,et al.  The exact multi-period mean-square forecast error for the first-order autoregressive model , 1988 .

[16]  A. Ullah Finite Sample Econometrics: A Unified Approach , 1990 .

[17]  A. M. Mathai Quadratic forms in random variables , 1992 .

[18]  J. Kiviet,et al.  Alternative Bias Approximations in Regressions with a Lagged-Dependent Variable , 1993, Econometric Theory.

[19]  Murray D. Smith,et al.  EXPECTATIONS OF RATIOS OF QUADRATIC FORMS IN NORMAL VARIABLES: EVALUATING SOME TOP‐ORDER INVARIANT POLYNOMIALS , 1993 .

[20]  Offer Lieberman,et al.  Saddlepoint approximation for the least squares estimator in first-order autoregression , 1994 .

[21]  V. K. Srivastava,et al.  Efficiency properties of feasible generalized least squares estimators in SURE models under non-normal disturbances , 1995 .

[22]  G. A. Ghazal Recurrence formula for expectations of products of quadratic forms , 1996 .

[23]  Eric Zivot,et al.  Valid Confidence Intervals and Inference in the Presence of Weak Instruments , 1998 .

[24]  B. Holmquist Expectations of products of quadratic forms in normal variables , 1996 .

[25]  Offer Lieberman The Effect of Nonnormality , 1997, Econometric Theory.

[26]  Yong Bao,et al.  The Second-Order Bias and Mean Squared Error of Estimators in Time Series Models , 2007 .

[27]  Ivana Komunjer,et al.  Asymmetric power distribution: Theory and applications to risk measurement , 2007 .

[28]  Aman Ullah,et al.  Finite Sample Econometrics , 2004 .

[29]  Takashi Yamagata,et al.  Testing Slope Homogeneity in Large Panels , 2005, SSRN Electronic Journal.

[30]  A. Ullah,et al.  Finite sample properties of maximum likelihood estimator in spatial models , 2007 .

[31]  Yong Bao THE APPROXIMATE MOMENTS OF THE LEAST SQUARES ESTIMATOR FOR THE STATIONARY AUTOREGRESSIVE MODEL UNDER A GENERAL ERROR DISTRIBUTION , 2007, Econometric Theory.