Ordinals and Knuth-Bendix Orders

In this paper we consider a hierarchy of three versions of Knuth-Bendix orders. (1) We show that the standard definition can be (slightly) simplified without affecting the ordering relation. (2) For the extension of transfinite Knuth-Bendix orders we show that transfinite ordinals are not needed as weights, as far as termination of finite rewrite systems is concerned. (3) Nevertheless termination proving benefits from transfinite ordinals when used in the setting of general Knuth-Bendix orders defined over a weakly monotone algebra. We investigate the relationship to polynomial interpretations and present experimental results for both termination analysis and ordered completion. For the latter it is essential that the order is totalizable on ground terms.

[1]  Hans Zantema,et al.  Simple Termination of Rewrite Systems , 1997, Theor. Comput. Sci..

[2]  Hoon Hong,et al.  Testing Positiveness of Polynomials , 1998, Journal of Automated Reasoning.

[3]  Aart Middeldorp,et al.  Monotonicity Criteria for Polynomial Interpretations over the Naturals , 2010, IJCAR.

[4]  Nikolaj Bjørner,et al.  Automated Deduction - CADE-23 - 23rd International Conference on Automated Deduction, Wroclaw, Poland, July 31 - August 5, 2011. Proceedings , 2011, CADE.

[5]  Nachum Dershowitz,et al.  Orderings for term-rewriting systems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[6]  Aart Middeldorp,et al.  Termination Tools in Ordered Completion , 2010, IJCAR.

[7]  Joachim Steinbach,et al.  Extensions and Comparison of Simplification Orderings , 1989, RTA.

[8]  Uwe Waldmann,et al.  An Extension of the Knuth-Bendix Ordering with LPO-Like Properties , 2007, LPAR.

[9]  Andrei Voronkov,et al.  The design and implementation of VAMPIRE , 2002, AI Commun..

[10]  Geoff Sutcliffe The TPTP Problem Library and Associated Infrastructure , 2009, Journal of Automated Reasoning.

[11]  F. Stephan,et al.  Set theory , 2018, Mathematical Statistics with Applications in R.

[12]  H. Brown,et al.  Computational Problems in Abstract Algebra , 1971 .

[13]  Aart Middeldorp,et al.  Tyrolean Termination Tool 2 , 2009, RTA.

[14]  Nao Hirokawa,et al.  KBO Orientability , 2009, Journal of Automated Reasoning.

[15]  D. Knuth,et al.  Simple Word Problems in Universal Algebras , 1983 .

[16]  Andrei Voronkov,et al.  On Transfinite Knuth-Bendix Orders , 2011, CADE.

[17]  Alfons Geser,et al.  An Improved General Path Order , 1996, Applicable Algebra in Engineering, Communication and Computing.

[18]  Aart Middeldorp,et al.  Satisfiability of Non-linear (Ir)rational Arithmetic , 2010, LPAR.

[19]  William McCune,et al.  OTTER 3.0 Reference Manual and Guide , 1994 .

[20]  Nachum Dershowitz Orderings for Term-Rewriting Systems , 1979, FOCS.

[21]  Jeremy Dick,et al.  Automating the Knuth Bendix ordering , 1990, Acta Informatica.

[22]  R. L. Goodstein,et al.  On the restricted ordinal theorem , 1944, Journal of Symbolic Logic.

[23]  Enno Ohlebusch,et al.  Term Rewriting Systems , 2002 .

[24]  Frank Wolter,et al.  Monodic fragments of first-order temporal logics: 2000-2001 A.D , 2001, LPAR.

[25]  N. A C H U M D E R S H O W I T Z Termination of Rewriting' , 2022 .

[26]  Hans Zantema,et al.  Total termination of term rewriting , 1993, Applicable Algebra in Engineering, Communication and Computing.

[27]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..