Beyond space-filling: An illustrative case
暂无分享,去创建一个
[1] Oleg A. Smirnov. Computation of the Information Matrix for Models With Spatial Interaction on a Lattice , 2005 .
[2] Luc Pronzato,et al. Design of computer experiments: space filling and beyond , 2011, Statistics and Computing.
[3] Daniel R. Jeske,et al. Mean Squared Error of Estimation or Prediction under a General Linear Model , 1992 .
[4] Luc Pronzato,et al. Optimal experimental design and some related control problems , 2008, Autom..
[5] J. W. van Groenigen,et al. The influence of variogram parameters on optimal sampling schemes for mapping by kriging , 2000 .
[6] V. Roshan Joseph,et al. Limit Kriging , 2006, Technometrics.
[7] Luc Pronzato,et al. Relations Between Designs for Prediction and Estimation in Random Fields: An Illustrative Case , 2012 .
[8] Dale L. Zimmerman,et al. Optimal network design for spatial prediction, covariance parameter estimation, and empirical prediction , 2006 .
[9] J. Kiefer,et al. The Equivalence of Two Extremum Problems , 1960, Canadian Journal of Mathematics.
[10] M. E. Johnson,et al. Minimax and maximin distance designs , 1990 .
[11] Milan Stehlík,et al. Compound optimal spatial designs , 2009 .
[12] Markus Abt. Estimating the Prediction Mean Squared Error in Gaussian Stochastic Processes with Exponential Correlation Structure , 1999 .
[13] Zhiliang Ying,et al. Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process , 1991 .
[14] M. Stein,et al. Spatial sampling design for prediction with estimated parameters , 2006 .