Preparation and catalytic reaction of Au/Pd bimetallic nanoparticles in apo-ferritin.

We have succeeded in preparing Au/Pd core-shell nanoparticles in apo-ferritin and improving the catalytic reactivity of olefin hydrogenation relative to Pd0 nanoparticles in the cage.

[1]  K. Hirata,et al.  Polymerization of phenylacetylene by rhodium complexes within a discrete space of apo-ferritin. , 2009, Journal of the American Chemical Society.

[2]  K. Hirata,et al.  Process of accumulation of metal ions on the interior surface of apo-ferritin: crystal structures of a series of apo-ferritins containing variable quantities of Pd(II) ions. , 2009, Journal of the American Chemical Society.

[3]  Seung-Gu Kang,et al.  Directing noble metal ion chemistry within a designed ferritin protein. , 2008, Biochemistry.

[4]  G. Erker,et al.  Noncovalent insertion of ferrocenes into the protein shell of apo-ferritin. , 2008, Chemical communications.

[5]  G. Erker,et al.  Control of the coordination structure of organometallic palladium complexes in an apo-ferritin cage. , 2008, Journal of the American Chemical Society.

[6]  Trevor Douglas,et al.  Biological Containers: Protein Cages as Multifunctional Nanoplatforms , 2007 .

[7]  I. Yamashita,et al.  Synthesis of CoPt and FePt3 Nanowires Using the Central Channel of Tobacco Mosaic Virus as a Biotemplate , 2007 .

[8]  A. Papageorgiou,et al.  Iron incorporation in Streptococcus suis Dps-like peroxide resistance protein Dpr requires mobility in the ferroxidase center and leads to the formation of a ferrihydrite-like core. , 2006, Journal of molecular biology.

[9]  I. Sóvágó,et al.  Metal ion selectivity of oligopeptides. , 2006, Dalton transactions.

[10]  A. Belcher,et al.  Bio‐inspired Synthesis of Protein‐Encapsulated CoPt Nanoparticles , 2005 .

[11]  Glen C. King,et al.  Cobalt oxide hollow nanoparticles derived by bio-templating. , 2005, Chemical communications.

[12]  K. Yoshizawa,et al.  Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction system. , 2005, Inorganic chemistry.

[13]  Elizabeth C. Theil,et al.  Ferritins: dynamic management of biological iron and oxygen chemistry. , 2005, Accounts of chemical research.

[14]  Richard M Crooks,et al.  Bimetallic palladium-gold dendrimer-encapsulated catalysts. , 2004, Journal of the American Chemical Society.

[15]  D. Oesterhelt,et al.  Iron-oxo clusters biomineralizing on protein surfaces: structural analysis of Halobacterium salinarum DpsA in its low- and high-iron states. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[16]  R. Naik,et al.  Engineered protein cages for nanomaterial synthesis. , 2004, Journal of the American Chemical Society.

[17]  B. Gallois,et al.  Crystal structure and biochemical properties of the human mitochondrial ferritin and its mutant Ser144Ala. , 2004, Journal of molecular biology.

[18]  K. Nagayama,et al.  Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage. , 2004, Angewandte Chemie.

[19]  A. Belcher,et al.  Biological Routes to Metal Alloy Ferromagnetic Nanostructures , 2004 .

[20]  George Georgiou,et al.  Virus-Based Toolkit for the Directed Synthesis of Magnetic and Semiconducting Nanowires , 2004, Science.

[21]  J. Trent,et al.  Ordered nanoparticle arrays formed on engineered chaperonin protein templates , 2002, Nature materials.

[22]  Jason Wiggins,et al.  Self assembled nanoparticulate CO:PT for data storage applications , 2000 .

[23]  B. Gallois,et al.  Evidence of new cadmium binding sites in recombinant horse L‐chain ferritin by anomalous Fourier difference map calculation , 1998, Proteins.

[24]  Trevor Douglas,et al.  Host–guest encapsulation of materials by assembled virus protein cages , 1998, Nature.

[25]  Stephen Mann,et al.  Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers , 1997, Nature.

[26]  D. Rice,et al.  Comparison of the three-dimensional structures of recombinant human H and horse L ferritins at high resolution. , 1997, Journal of molecular biology.

[27]  N. Chasteen,et al.  Molecular diffusion into horse spleen ferritin: a nitroxide radical spin probe study. , 1996, Biophysical journal.

[28]  P. Harrison,et al.  The ferritins: molecular properties, iron storage function and cellular regulation. , 1996, Biochimica et biophysica acta.

[29]  P. Arosio,et al.  Evidence that residues exposed on the three-fold channels have active roles in the mechanism of ferritin iron incorporation. , 1996, The Biochemical journal.

[30]  H. Schmidbaur,et al.  Terminally Bifurcated Tetraaurio-alpha,omega-bis(sulfonium) Salts as Building Blocks for Auriophilicity-Determined Coordination Polymers. , 1996, Inorganic chemistry.

[31]  Elizabeth C. Theil,et al.  High resolution crystal structures of amphibian red-cell L ferritin: potential roles for structural plasticity and solvation in function. , 1995, Journal of molecular biology.

[32]  K. Asakura,et al.  Catalytic activity and structural analysis of polymer-protected gold/palladium bimetallic clusters prepared by the successive reduction of hydrogen tetrachloroaurate(III) and palladium dichloride , 1992 .

[33]  Stephen Mann,et al.  Synthesis of inorganic nanophase materials in supramolecular protein cages , 1991, Nature.

[34]  K. Osakada,et al.  Preparation of (Me3P)2Pd2(μ-η3-C3H5(μ-SPH) by reaction of Pd(O) complex with allyl phenyl sulfide , 1990 .

[35]  Dongmei Cui,et al.  Supplementary Material (ESI) for Chemical Communications , 2009 .