Fermion transfer in the ϕ4 model with a half-BPS preserving impurity

We study a fermion field coupled to a scalar via a Yukawa term. The scalar field is the $\phi^4$ model with an impurity that preserves half of the BPS property. We analyze the spectrum of the defects of the model and collisions between them both close to the BPS regime and not. As the fermion binds to these defects, it may be transferred from one to the other, which we quantify via overlaps, known as Bogoliubov coefficients. BPS collisions are less likely to transfer the fermion between defects and can be adiabatic for non-relativistic velocities, especially for small coupling constants. Moreover, closer to the BPS limit only a small fraction of the fermion number is radiated away. In contrast, non-BPS collisions lead to more radiation in the fermion field and excitation of the fermion to higher bound states, and the result is more sensitive to the parameters.

[1]  Y. Shnir,et al.  Kinks bounded by fermions , 2019, Physical Review D.

[2]  Y. Shnir,et al.  Fermions on kinks revisited , 2019, Physical Review D.

[3]  Y. Shnir,et al.  Fermion exchange interaction between magnetic Skyrmions , 2019, Physical Review D.

[4]  R. Fresneda,et al.  Soliton fermionic number from the heat kernel expansion , 2019, The European Physical Journal C.

[5]  C. Adam,et al.  Solvable self-dual impurity models , 2019, Journal of High Energy Physics.

[6]  C. Adam,et al.  Spectral Walls in Soliton Collisions. , 2019, Physical review letters.

[7]  C. Adam,et al.  BPS soliton-impurity models and supersymmetry , 2019, Journal of High Energy Physics.

[8]  C. Adam,et al.  The ϕ4 model with the BPS preserving defect , 2018, Journal of High Energy Physics.

[9]  Robert J. Decker,et al.  Kink-Kink and Kink-Antikink Interactions with Long-Range Tails. , 2018, Physical review letters.

[10]  Ekaterina Belendryasova,et al.  Scattering of the φ8 kinks with power-law asymptotics , 2017, Commun. Nonlinear Sci. Numer. Simul..

[11]  D. Bazeia,et al.  Fermion bound states in geometrically deformed backgrounds , 2017, Chinese Physics C.

[12]  Y. Shnir,et al.  Soliton solutions of the fermion-Skyrmion system in (2+1) dimensions , 2018, Journal of High Energy Physics.

[13]  P. Dorey,et al.  Resonant kink-antikink scattering through quasinormal modes , 2017, 1712.10235.

[14]  V. Gani,et al.  Scattering of kinks of the sinh-deformed ϕ 4 model , 2018 .

[15]  A. Alonso-Izquierdo,et al.  Reflection, transmutation, annihilation, and resonance in two-component kink collisions , 2017, 1711.10034.

[16]  V. Gani,et al.  Scattering of kinks of the sinh-deformed $$\varphi ^4$$φ4 model , 2017, 1710.04993.

[17]  S. Dmitriev,et al.  Multi-kink collisions in the ϕ6 model , 2017, 1704.08353.

[18]  K. Nobrega,et al.  Degenerate vacua to vacuumless model and kink–antikink collisions , 2017, 1702.06927.

[19]  D. Bazeia,et al.  Fermionic bound states in distinct kinklike backgrounds , 2017, 1702.00891.

[20]  H. Weigel,et al.  Collective Coordinates in One-Dimensional Soliton Models Revisited , 2016, 1609.06833.

[21]  V. Gani,et al.  Kink excitation spectra in the (1+1)-dimensional φ8 model , 2015, 1506.02313.

[22]  A. Amado,et al.  Coupled fermion–kink system in Jackiw–Rebbi model , 2014, 1406.1459.

[23]  S. S. Gousheh,et al.  Massive Jackiw-Rebbi Model , 2014, 1404.4263.

[24]  V. Gani,et al.  Kink interactions in the (1+1)-dimensional $\phi^6$ model , 2014, 1402.5903.

[25]  S. S. Gousheh,et al.  Complete spectral analysis of the Jackiw-Rebbi model, including its zero mode , 2014, 1402.2444.

[26]  Seyed Morteza Hosseini,et al.  One-loop quantum correction to the mass of the supersymmetric Kink in (1 + 1) dimensions using the exact spectra and the phase shifts , 2014, 1402.1934.

[27]  S. S. Gousheh,et al.  Casimir Energy for a Coupled Fermion-Kink System and its stability , 2012, 1209.4490.

[28]  S. S. Gousheh,et al.  An investigation of the Casimir energy for a fermion coupled to the sine-Gordon soliton with parity decomposition , 2012, 1212.2089.

[29]  J. C. R. E. Oliveira,et al.  Highly interactive kink solutions , 2012, 1208.4747.

[30]  A. Halavanau,et al.  Resonance structures in coupled two-componentϕ4model , 2012, 1206.4471.

[31]  S. S. Gousheh,et al.  Casimir energy for a coupled fermion-soliton system , 2011, 1209.5237.

[32]  S. S. Gousheh,et al.  Exact solutions of a fermion-soliton system in two dimensions , 2011, 1309.3179.

[33]  T. Romanczukiewicz,et al.  Kink-antikink collisions in the φ⁶ model. , 2011, Physical review letters.

[34]  Y. Brihaye,et al.  Remarks on bell-shaped lumps: Stability and fermionic modes , 2008, 0803.1458.

[35]  T. Vachaspati,et al.  Fermions on one or fewer kinks , 2007, 0709.3668.

[36]  A. Tranberg,et al.  Particle transfer in braneworld collisions , 2007, 0705.3606.

[37]  K. Maeda,et al.  Fermions on colliding branes , 2006, hep-th/0610286.

[38]  A. Melfo,et al.  Fermion localization on thick branes , 2006, hep-th/0601161.

[39]  R. Koley,et al.  Scalar kinks and fermion localization in warped spacetimes , 2004, hep-th/0407158.

[40]  M. Shaposhnikov,et al.  Fermion zero-modes on brane-worlds , 2000, hep-th/0008079.

[41]  Jordan,et al.  Solutions of the Dirac equation for fermions in Skyrme fields. , 1986, Physical review. D, Particles and fields.

[42]  A. Niemi,et al.  Fermion number fractionization in quantum field theory , 1986 .

[43]  S. Kahana,et al.  Soliton with valence quarks in the chiral invariant σ-model , 1984 .

[44]  David K. Campbell,et al.  Resonance structure in kink-antikink interactions in φ4 theory , 1983 .

[45]  Mikhail Shaposhnikov,et al.  Do we live inside a domain wall , 1983 .

[46]  R. Jackiw,et al.  Zero modes of the vortex-fermion system , 1981 .

[47]  F. Wilczek,et al.  Fractional Quantum Numbers on Solitons , 1981 .

[48]  T. Sugiyama Kink-Antikink Collisions in the Two-Dimensional φ4 Model , 1979 .

[49]  Claudio Rebbi,et al.  Solitons with Fermion Number 1/2 , 1976 .