Hyperbolic partial differential-difference equation in the mathematical modeling of neuronal firing and its numerical solution

[1]  B. Katz,et al.  Depolarization of sensory terminals and the initiation of impulses in the muscle spindle , 1950, The Journal of physiology.

[2]  S. W. Kuffler,et al.  The quantal nature of transmission and spontaneous miniature potentials at the crayfish neuromuscular junction , 1961, The Journal of physiology.

[3]  B. Katz,et al.  A study of spontaneous miniature potentials in spinal motoneurones , 1963, The Journal of physiology.

[4]  B. L. Ginsborg,et al.  On the quantal release of the transmitter at a sympathetic synapse , 1963, The Journal of physiology.

[5]  B. L. Ginsborg THE PHYSIOLOGY OF SYNAPSES , 1964 .

[6]  J. Eccles The Physiology of Synapses , 1964, Springer Berlin Heidelberg.

[7]  R. Stein A THEORETICAL ANALYSIS OF NEURONAL VARIABILITY. , 1965, Biophysical journal.

[8]  D. H. Paul The physiology of nerve cells , 1975 .

[9]  Wil H. A. Schilders,et al.  Uniform Numerical Methods for Problems with Initial and Boundary Layers , 1980 .

[10]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[11]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[12]  A. Kulikovskii,et al.  Mathematical Aspects of Numerical Solution of Hyperbolic Systems. Monographs and Surveys in Pure and Applied Mathematics, Vol. 118 , 2002 .

[13]  B. Katz,et al.  QUANTAL COMPONENTS OF THE END-PLATE POTENTIAL BY J. DEL CASTILLO AND B. KATZ , 2006 .

[14]  Martin Stynes,et al.  Numerical Treatment of Partial Differential Equations , 2007 .