Metal-catalyzed semiconductor nanowires: a review on the control of growth directions

Semiconductor nanowires have become an important building block for nanotechnology. The growth of semiconductor nanowires using a metal catalyst via the vapor‐liquid‐solid (VLS) or vapor‐solid‐solid (VSS) mechanism has yielded growth directions in � 111 � , � 100 � and � 110 � etc. In this paper, we summarize and discuss a broad range of factors that affect the growth direction of VLS or VSS grown epitaxial semiconductor nanowires, providing an indexed glimpse of the control of nanowire growth directions and thus the mechanical, electrical and optical properties associated with the crystal orientation. The prospect of using planar nanowires for large area planar processing toward future nanowire array-based nanoelectronics and photonic applications is discussed.

[1]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[2]  R. Wagner,et al.  Mechanism of Branching and Kinking during VLS Crystal Growth , 1968 .

[3]  N. N. Sheftal,et al.  Morphology of silicon whiskers grown by the VLS-technique , 1971 .

[4]  E. I. Givargizov Fundamental aspects of VLS growth , 1975 .

[5]  G. Robertshaw,et al.  Kinetics of thermal desorption and thermal conversion of adsorbates: AES studies , 1978 .

[6]  Kenji Hiruma,et al.  GaAs p‐n junction formed in quantum wire crystals , 1992 .

[7]  M. Koguchi,et al.  Crystal Structure Change of GaAs and InAs Whiskers from Zinc-Blende to Wurtzite Type , 1992 .

[8]  Kenji Hiruma,et al.  Growth and optical properties of nanometer‐scale GaAs and InAs whiskers , 1995 .

[9]  T. Katsuyama,et al.  Self-organized growth of GaAs/InAs heterostructure nanocylinders by organometallic vapor phase epitaxy , 1996 .

[10]  T. Katsuyama,et al.  Self‐organized fabrication of planar GaAs nanowhisker arrays , 1996 .

[11]  H. Idriss,et al.  Reactions of acetone on the surfaces of the oxides of uranium , 1997 .

[12]  Harry E. Ruda,et al.  Growth of silicon nanowires via gold/silane vapor–liquid-solid reaction , 1997 .

[13]  Masataka Shirai,et al.  Growth mechanism of planar-type GaAs nanowhiskers , 1997 .

[14]  Y. Ohno,et al.  Silicon nanowhiskers grown on a hydrogen-terminated silicon {111} surface , 1998 .

[15]  Xiangfeng Duan,et al.  Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires , 2000 .

[16]  K. Johnston,et al.  Control of thickness and orientation of solution-grown silicon nanowires , 2000, Science.

[17]  Wendy L. Sarney,et al.  Growth of large-scale GaN nanowires and tubes by direct reaction of Ga with NH3 , 2000 .

[18]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[19]  Lars Samuelson,et al.  Size-, shape-, and position-controlled GaAs nano-whiskers , 2001 .

[20]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[21]  Yu Huang,et al.  Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices. , 2001 .

[22]  Charles M. Lieber,et al.  Diameter-controlled synthesis of single-crystal silicon nanowires , 2001 .

[23]  K. H. Chen,et al.  Catalytic growth and characterization of gallium nitride nanowires. , 2001, Journal of the American Chemical Society.

[24]  Eicke R. Weber,et al.  Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport , 2001 .

[25]  R. Nötzel,et al.  Diffusion and incorporation: shape evolution during overgrowth on structured substrates , 2001 .

[26]  Charles M. Lieber,et al.  Gallium Nitride Nanowire Nanodevices , 2002 .

[27]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[28]  Lars Samuelson,et al.  One-dimensional heterostructures in semiconductor nanowhiskers , 2002 .

[29]  Heon-Jin Choi,et al.  Controlled growth of ZnO nanowires and their optical properties , 2002 .

[30]  Kelly P. Knutsen,et al.  Single gallium nitride nanowire lasers , 2002, Nature materials.

[31]  C. Thelander,et al.  Growth and characterization of GaAs and InAs nano-whiskers and InAs/GaAs heterostructures , 2002 .

[32]  Florian Siegert,et al.  Epitaxial core – shell and core – multishell nanowire heterostructures , 2002 .

[33]  Joan M. Redwing,et al.  Template-directed vapor–liquid–solid growth of silicon nanowires , 2002 .

[34]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[35]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[36]  Axel Scherer,et al.  Nanowire-Based Very-High-Frequency Electromechanical Resonator , 2003 .

[37]  Lars Samuelson,et al.  Fabrication of individually seeded nanowire arrays by vapour–liquid–solid growth , 2003 .

[38]  I. Sou,et al.  ZnSe nanowires epitaxially grown on GaP(111) substrates by molecular-beam epitaxy , 2003 .

[39]  C. Lee,et al.  Growth Direction and Cross‐Sectional Study of Silicon Nanowires , 2003 .

[40]  P. Yang,et al.  Metalorganic Chemical Vapor Deposition Route to GaN Nanowires with Triangular Cross Sections , 2003 .

[41]  M. Meyyappan,et al.  Growth of Epitaxial Nanowires at the Junctions of Nanowalls , 2003, Science.

[42]  K. Kavanagh,et al.  Growth, branching, and kinking of molecular-beam epitaxial 〈110〉 GaAs nanowires , 2003 .

[43]  Joshua E. Goldberger,et al.  Low‐Temperature Wafer‐Scale Production of ZnO Nanowire Arrays. , 2003 .

[44]  S. T. Lee,et al.  Small-Diameter Silicon Nanowire Surfaces , 2003, Science.

[45]  Lars Samuelson,et al.  Semiconductor nanowires for 0D and 1D physics and applications , 2004 .

[46]  Lars Samuelson,et al.  Epitaxial III-V nanowires on silicon , 2004 .

[47]  M. Chou,et al.  Quantum confinement and electronic properties of silicon nanowires. , 2004, Physical review letters.

[48]  Lars Samuelson,et al.  Defect-free InP nanowires grown in [001] direction on InP (001) , 2004 .

[49]  R. Stanley Williams,et al.  Ultrahigh-density silicon nanobridges formed between two vertical silicon surfaces , 2004 .

[50]  Charles M. Lieber,et al.  Gallium Nitride-Based Nanowire Radial Heterostructures for Nanophotonics , 2004 .

[51]  Peter J. Pauzauskie,et al.  Crystallographic alignment of high-density gallium nitride nanowire arrays , 2004, Nature materials.

[52]  Lars Samuelson,et al.  Growth of one-dimensional nanostructures in MOVPE , 2004 .

[53]  Yi Cui,et al.  Controlled Growth and Structures of Molecular-Scale Silicon Nanowires , 2004 .

[54]  Lars Montelius,et al.  Nanowire Arrays Defined by Nanoimprint Lithography , 2004 .

[55]  Mark D. Vaudin,et al.  Horizontal growth and in situ assembly of oriented zinc oxide nanowires , 2004 .

[56]  M. Kaiser,et al.  Epitaxial growth of InP nanowires on germanium , 2004, Nature materials.

[57]  Fang Qian,et al.  Rational growth of branched and hyperbranched nanowire structures , 2004 .

[58]  Zhong Lin Wang,et al.  Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays. , 2004, Nano letters.

[59]  Direct synthesis of single-crystalline silicon nanowires using molten gallium and silane plasma , 2004 .

[60]  Volker Schmidt,et al.  Diameter-dependent growth direction of epitaxial silicon nanowires. , 2005, Nano letters.

[61]  U. Gösele,et al.  Local luminescence of ZnO nanowire-covered surface: A cathodoluminescence microscopy study , 2005 .

[62]  K. Jiang,et al.  Orientation‐Controlled Growth of Single‐Crystal Silicon‐Nanowire Arrays , 2005 .

[63]  S. Sharma,et al.  A novel interconnection technique for manufacturing nanowire devices , 2005 .

[64]  Charles M. Lieber,et al.  GaN nanowire lasers with low lasing thresholds , 2005 .

[65]  K. Kempa,et al.  Large hexagonal arrays of aligned ZnO nanorods , 2005 .

[66]  Peng Li,et al.  Growth of uniformly aligned ZnO nanowire heterojunction arrays on GaN, AlN, and Al0.5Ga0.5N substrates. , 2005, Journal of the American Chemical Society.

[67]  Lars Samuelson,et al.  Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires. , 2005, Nano letters.

[68]  B. Korgel,et al.  Crystallography and surface faceting of germanium nanowires. , 2005, Small.

[69]  S. T. Lee,et al.  Structures and energetics of hydrogen-terminated silicon nanowire surfaces. , 2005, The Journal of chemical physics.

[70]  Charles M. Lieber,et al.  Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. , 2005, Nano letters.

[71]  A. Davydov,et al.  Growth habits and defects in ZnO nanowires grown on GaN/sapphire substrates , 2005 .

[72]  M.S. Islam,et al.  InP nanobridges epitaxially formed between two vertical Si surfaces , 2005, 5th IEEE Conference on Nanotechnology, 2005..

[73]  E. Lundgren,et al.  The influence of lysine on InP(001) surface ordering and nanowire growth , 2005 .

[74]  J. Conley,et al.  Directed integration of ZnO nanobridge devices on a Si substrate , 2005 .

[75]  Elif Ertekin,et al.  Equilibrium limits of coherency in strained nanowire heterostructures , 2005 .

[76]  R. Stanley Williams,et al.  Structural characteristics and connection mechanism of gold-catalyzed bridging silicon nanowires , 2005 .

[77]  Roya Maboudian,et al.  Si Nanowire Bridges in Microtrenches: Integration of Growth into Device Fabrication , 2005 .

[78]  L. Samuelson,et al.  Infrared photodetectors in heterostructure nanowires. , 2006, Nano letters.

[79]  T. Bryllert,et al.  Vertical high-mobility wrap-gated InAs nanowire transistor , 2006, IEEE Electron Device Letters.

[80]  E. Bakkers,et al.  Position-controlled epitaxial III–V nanowires on silicon , 2006 .

[81]  George T. Wang,et al.  Highly aligned, template-free growth and characterization of vertical GaN nanowires on sapphire by metal–organic chemical vapour deposition , 2006 .

[82]  Lars Samuelson,et al.  Position-controlled interconnected InAs nanowire networks. , 2006, Nano letters.

[83]  E. Bakkers,et al.  Interface study on heterostructured GaP–GaAs nanowires , 2006, Nanotechnology.

[84]  Charles M Lieber,et al.  Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection , 2006, Nature materials.

[85]  Y. F. Chan,et al.  The Size‐Dependent Growth Direction of ZnSe Nanowires , 2006 .

[86]  E. Bakkers,et al.  Growth kinetics of heterostructured GaP-GaAs nanowires. , 2006, Journal of the American Chemical Society.

[87]  Y. Nishi,et al.  Nature of germanium nanowire heteroepitaxy on silicon substrates , 2006 .

[88]  L. Samuelson,et al.  Growth and characterization of defect free GaAs nanowires , 2006 .

[89]  Jonas Johansson,et al.  Growth related aspects of epitaxial nanowires , 2006 .

[90]  Nanowire growth and dopants studied by cross-sectional scanning tunnelling microscopy , 2006 .

[91]  S. Senz,et al.  Epitaxial growth of silicon nanowires using an aluminium catalyst , 2006, Nature nanotechnology.

[92]  H. Jiang,et al.  Effect of substrate orientation on the catalyst-free growth of InP nanowires , 2007 .

[93]  Babak Nikoobakht,et al.  Toward Industrial-Scale Fabrication of Nanowire-Based Devices , 2007 .

[94]  V. Zwiller,et al.  Single quantum dot nanowire LEDs. , 2007, Nano letters.

[95]  H. Tan,et al.  Novel growth phenomena observed in axial InAs/GaAs nanowire heterostructures. , 2007, Small.

[96]  M. Lazzarino,et al.  Growth by molecular beam epitaxy and electrical characterization of GaAs nanowires , 2007 .

[97]  Tae-Wook Kim,et al.  Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates. , 2007, Nano letters.

[98]  Influence of Plasma Stimulation on Si Nanowire Nucleation and Orientation Dependence , 2007 .

[99]  P. Yang Nanowire Photonics , 2007, 2007 International Nano-Optoelectronics Workshop.

[100]  E. Yu,et al.  Growth of InAs Nanowires on SiO2 Substrates: Nucleation, Evolution, and the Role of Au Nanoparticles , 2007 .

[101]  Lars Samuelson,et al.  The morphology of axial and branched nanowire heterostructures. , 2007, Nano letters.

[102]  Gengfeng Zheng,et al.  Nanowire-Based Nanoelectronic Devices in the Life Sciences , 2007 .

[103]  Shadi A Dayeh,et al.  III-V nanowire growth mechanism: V/III ratio and temperature effects. , 2007, Nano letters.

[104]  Pu-Xian Gao,et al.  Bridged ZnO nanowires across trenched electrodes , 2007 .

[105]  Epitaxial growth of aligned GaN nanowires and nanobridges , 2007 .

[106]  Directed growth of horizontally aligned gallium nitride nanowires for nanoelectromechanical resonator arrays. , 2007, Nano letters.

[107]  Peidong Yang,et al.  Growth and Electrical Characteristics of Platinum‐Nanoparticle‐Catalyzed Silicon Nanowires , 2007 .

[108]  D. Su,et al.  Temperature-dependent growth direction of ultrathin ZnSe nanowires. , 2007, Small.

[109]  E. Bakkers,et al.  Epitaxial Growth of III-V Nanowires on Group IV Substrates , 2007 .

[110]  C. Shan,et al.  CdSe nanowires with controllable growth orientations , 2007 .

[111]  C. Soci,et al.  ZnO nanowire UV photodetectors with high internal gain. , 2007, Nano letters.

[112]  H. Tan,et al.  Evolution of InAs branches in InAs/GaAs nanowire heterostructures , 2007 .

[113]  Connie J. Chang-Hasnain,et al.  Critical diameter for III-V nanowires grown on lattice-mismatched substrates , 2007 .

[114]  Soo‐Ghang Ihn,et al.  Growth of GaAs Nanowires on Si Substrates Using a Molecular Beam Epitaxy , 2007, IEEE Transactions on Nanotechnology.

[115]  L. Samuelson,et al.  Monolithic GaAs/InGaP nanowire light emitting diodes on silicon , 2008, Nanotechnology.

[116]  Cesare Soci,et al.  A systematic study on the growth of gaas nanowires by metal-organic chemical vapor deposition. , 2008, Nano letters.

[117]  Nathan S Lewis,et al.  Photovoltaic measurements in single-nanowire silicon solar cells. , 2008, Nano letters.

[118]  Federico Capasso,et al.  Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation , 2008 .

[119]  Indirect-to-direct band gap transitions in phosphorus adsorbed ⟨112⟩ silicon nanowires , 2008 .

[120]  M. Zacharias,et al.  Manipulation of Crawling Growth for the Formation of Sub-millimeter Long ZnO Nanowalls , 2009 .

[121]  Theresa S. Mayer,et al.  Bottom-up assembly of large-area nanowire resonator arrays. , 2008, Nature nanotechnology.

[122]  E. Bertagnolli,et al.  Pressure-induced orientation control of the growth of epitaxial silicon nanowires. , 2008, Nano letters.

[123]  Fang Qian,et al.  Modal characteristics in a single-nanowire cavity with a triangular cross section. , 2008, Nano letters.

[124]  A. Lu,et al.  Unique electronic band structures of hydrogen-terminated silicon nanowires , 2007, Nanotechnology.

[125]  H. Tan,et al.  Vertically standing Ge nanowires on GaAs(110) substrates , 2008, Nanotechnology.

[126]  Darija Susac,et al.  Heteroepitaxial growth of vertical GaAs nanowires on Si(111) substrates by metal-organic chemical vapor deposition. , 2008, Nano letters.

[127]  T. Topuria,et al.  Patterned epitaxial vapor-liquid-solid growth of silicon nanowires on Si(111) using silane , 2008 .

[128]  George T. Wang,et al.  The role of collisions in the aligned growth of vertical nanowires , 2008 .

[129]  Nathaniel J Quitoriano,et al.  Integratable nanowire transistors. , 2008, Nano letters.

[130]  A. Lu,et al.  Tunable electronic band structures of hydrogen-terminated ⟨112⟩ silicon nanowires , 2008 .

[131]  F. Ross,et al.  Control of GaP and GaAs nanowire morphology through particle and substrate chemical modification. , 2008, Nano letters.

[132]  H. Riel,et al.  Toward Nanowire Electronics , 2008, IEEE Transactions on Electron Devices.

[133]  Ning Wang,et al.  Growth of nanowires , 2008 .

[134]  Gang Zhang,et al.  A universal expression of band gap for silicon nanowires of different cross-section geometries. , 2008, Nano letters.

[135]  Ik Su Chun,et al.  Planar GaAs nanowires on GaAs (100) substrates: self-aligned, nearly twin-defect free, and transfer-printable. , 2008, Nano letters.

[136]  Chia-Chun Chen,et al.  On-chip fabrication of well-aligned and contact-barrier-free GaN nanobridge devices with ultrahigh photocurrent responsivity. , 2008, Small.

[137]  R. Misra,et al.  Comparative study of antimicrobial and photocatalytic activity in titania encapsulated composite nanoparticles with different dopants , 2008 .

[138]  Chennupati Jagadish,et al.  High Purity GaAs Nanowires Free of Planar Defects: Growth and Characterization , 2008 .

[139]  H. Tan,et al.  Evolution of epitaxial InAs nanowires on GaAs 111B. , 2009, Small.

[140]  Charles M. Lieber,et al.  Single nanowire photovoltaics. , 2009, Chemical Society reviews.

[141]  H. Linke,et al.  The fabrication of dense and uniform InAs nanowire arrays , 2009, Nanotechnology.

[142]  R. LaPierre,et al.  The effect of GaAs(100) surface preparation on the growth of nanowires , 2009, Nanotechnology.

[143]  GaAs MESFET With a High-Mobility Self-Assembled Planar Nanowire Channel , 2009, IEEE Electron Device Letters.

[144]  E. Bertagnolli,et al.  Orientation specific synthesis of kinked silicon nanowires grown by the vapour–liquid–solid mechanism , 2009, Nanotechnology.

[145]  C. Thompson,et al.  Influence of indium and phosphine on Au-catalyzed InP nanowire growth on Si substrates , 2009 .

[146]  Wei Wu,et al.  Guiding vapor–liquid–solid nanowire growth using SiO2 , 2009, Nanotechnology.

[147]  Structures and energetics of indium-catalyzed silicon nanowires. , 2009, Nano letters.

[148]  C. Lieber,et al.  12 GHz $F_{\rm MAX}$ GaN/AlN/AlGaN Nanowire MISFET , 2009 .

[149]  Bozhi Tian,et al.  Coaxial Group Iii#nitride Nanowire Photovoltaics , 2009 .