Canonical polyadic decomposition of third-order tensors: relaxed uniqueness conditions and algebraic algorithm

[1]  F. L. Hitchcock The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .

[2]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[3]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[4]  Richard A. Harshman,et al.  Determination and Proof of Minimum Uniqueness Conditions for PARAFAC1 , 1972 .

[5]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[6]  J. Mocks,et al.  Topographic components model for event-related potentials and some biophysical considerations , 1988, IEEE Transactions on Biomedical Engineering.

[7]  S. Leurgans,et al.  A Decomposition for Three-Way Arrays , 1993, SIAM J. Matrix Anal. Appl..

[8]  R. Harshman,et al.  PARAFAC: parallel factor analysis , 1994 .

[9]  Nikos D. Sidiropoulos,et al.  Kruskal's permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints , 2004, IEEE Transactions on Signal Processing.

[10]  Lieven De Lathauwer,et al.  A Link between the Canonical Decomposition in Multilinear Algebra and Simultaneous Matrix Diagonalization , 2006, SIAM J. Matrix Anal. Appl..

[11]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[12]  Giorgio Ottaviani,et al.  On Generic Identifiability of 3-Tensors of Small Rank , 2011, SIAM J. Matrix Anal. Appl..

[13]  XIJING GUO,et al.  Uni-mode and Partial Uniqueness Conditions for CANDECOMP/PARAFAC of Three-Way Arrays with Linearly Dependent Loadings , 2012, SIAM J. Matrix Anal. Appl..

[14]  Tingzhu Huang,et al.  Uni-mode uniqueness conditions for CANDECOMP/PARAFAC decomposition of n-way arrays with linearly dependent loadings , 2013 .

[15]  Lieven De Lathauwer,et al.  Optimization-Based Algorithms for Tensor Decompositions: Canonical Polyadic Decomposition, Decomposition in Rank-(Lr, Lr, 1) Terms, and a New Generalization , 2013, SIAM J. Optim..

[16]  C. Bocci,et al.  Refined methods for the identifiability of tensors , 2013, 1303.6915.

[17]  Lieven De Lathauwer,et al.  On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part II: Uniqueness of the Overall Decomposition , 2013, SIAM J. Matrix Anal. Appl..

[18]  Lieven De Lathauwer,et al.  On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part I: Basic Results and Uniqueness of One Factor Matrix , 2013, SIAM J. Matrix Anal. Appl..

[19]  Lieven De Lathauwer,et al.  Canonical Polyadic Decomposition of Third-Order Tensors: Reduction to Generalized Eigenvalue Decomposition , 2013, SIAM J. Matrix Anal. Appl..

[20]  Lieven De Lathauwer,et al.  Generic Uniqueness Conditions for the Canonical Polyadic Decomposition and INDSCAL , 2014, SIAM J. Matrix Anal. Appl..

[21]  Andrzej Cichocki,et al.  Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.

[22]  Nikos D. Sidiropoulos,et al.  Tensor Decomposition for Signal Processing and Machine Learning , 2016, IEEE Transactions on Signal Processing.