Large scale proteomic studies create novel privacy considerations
暂无分享,去创建一个
J. Rotter | M. Cho | C. Clish | K. Kechris | A. Manichaikul | B. Hobbs | D. Ngo | V. Ortega | B. Yu | I. Konigsberg | M. Decamp | K. Pratte | L. Lange | M. Coors | S. Rich | J. Curtis | Xiaowei Hu | E. Litkowski | D. Meyers | W. O’Neal | F. Banaei-Kashani | M. Morris | E. Bleecker | Russell P Bowler | A.C. Hill | Claire Guo | Betty A Gorbet | R. E. Gerzsten | Ma-En Obeidat | Joseph Loureiro
[1] D. DeMeo,et al. Unique and shared systemic biomarkers for emphysema in Alpha-1 Antitrypsin deficiency and chronic obstructive pulmonary disease , 2022, EBioMedicine.
[2] Bing Zhang,et al. Deep Learning in Proteomics , 2020, Proteomics.
[3] Stephen A. Williams,et al. Plasma protein patterns as comprehensive indicators of health , 2019, Nature Medicine.
[4] Andreas Keller,et al. Undulating changes in human plasma proteome profiles across the lifespan , 2019, Nature Medicine.
[5] Gerben Menschaert,et al. Beyond Genes: Re-Identifiability of Proteomic Data and Its Implications for Personalized Medicine , 2019, Genes.
[6] Scott T. Weiss,et al. Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations , 2019, bioRxiv.
[7] E. Clayton,et al. The law of genetic privacy: applications, implications, and limitations , 2019, Journal of law and the biosciences.
[8] E. Hoffman,et al. Genome-wide association study of lung function and clinical implication in heavy smokers , 2018, BMC Medical Genetics.
[9] Stephen Burgess,et al. Genomic atlas of the human plasma proteome , 2018, Nature.
[10] Yuri Kotliarov,et al. Assessment of Variability in the SOMAscan Assay , 2017, Scientific Reports.
[11] Haixu Tang,et al. On the privacy risks of sharing clinical proteomics data , 2016, CRI.
[12] E. Regan,et al. Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD , 2016, PLoS genetics.
[13] L. Beskow. Lessons from HeLa Cells: The Ethics and Policy of Biospecimens , 2016, Annual review of genomics and human genetics.
[14] Christoph Lange,et al. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. , 2014, The Lancet. Respiratory medicine.
[15] Lisa M LaVange,et al. Design of the Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS) , 2013, Thorax.
[16] Latanya Sweeney,et al. Identifying Participants in the Personal Genome Project by Name , 2013, ArXiv.
[17] K. Hao,et al. Bayesian method to predict individual SNP genotypes from gene expression data , 2012, Nature Genetics.
[18] Andrey A. Shabalin,et al. Matrix eQTL: ultra fast eQTL analysis via large matrix operations , 2011, Bioinform..
[19] E. Regan,et al. Genetic Epidemiology of COPD (COPDGene) Study Design , 2011, COPD.
[20] Philip S. Yu,et al. Privacy-Preserving Data Mining - Models and Algorithms , 2008, Advances in Database Systems.
[21] Michael Gertz,et al. Handbook of Database Security - Applications and Trends , 2007, Handbook of Database Security.
[22] Cesare Furlanello,et al. Machine learning methods for predictive proteomics , 2007, Briefings Bioinform..
[23] Ninghui Li,et al. t-Closeness: Privacy Beyond k-Anonymity and l-Diversity , 2007, 2007 IEEE 23rd International Conference on Data Engineering.
[24] R. Kronmal,et al. Multi-Ethnic Study of Atherosclerosis: objectives and design. , 2002, American journal of epidemiology.
[25] Ramakrishnan Srikant,et al. Hippocratic Databases , 2002, VLDB.
[26] D. Mccormick. Sequence the Human Genome , 1986, Bio/Technology.
[27] A. Jeffreys,et al. Individual-specific ‘fingerprints’ of human DNA , 1985, Nature.
[28] Guigang Zhang,et al. Deep Learning , 2016, Int. J. Semantic Comput..
[29] A. Svejgaard,et al. [Genetic epidemiology]. , 2003, Ugeskrift for laeger.
[30] International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome , 2001, Nature.