Large scale proteomic studies create novel privacy considerations

[1]  D. DeMeo,et al.  Unique and shared systemic biomarkers for emphysema in Alpha-1 Antitrypsin deficiency and chronic obstructive pulmonary disease , 2022, EBioMedicine.

[2]  Bing Zhang,et al.  Deep Learning in Proteomics , 2020, Proteomics.

[3]  Stephen A. Williams,et al.  Plasma protein patterns as comprehensive indicators of health , 2019, Nature Medicine.

[4]  Andreas Keller,et al.  Undulating changes in human plasma proteome profiles across the lifespan , 2019, Nature Medicine.

[5]  Gerben Menschaert,et al.  Beyond Genes: Re-Identifiability of Proteomic Data and Its Implications for Personalized Medicine , 2019, Genes.

[6]  Scott T. Weiss,et al.  Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations , 2019, bioRxiv.

[7]  E. Clayton,et al.  The law of genetic privacy: applications, implications, and limitations , 2019, Journal of law and the biosciences.

[8]  E. Hoffman,et al.  Genome-wide association study of lung function and clinical implication in heavy smokers , 2018, BMC Medical Genetics.

[9]  Stephen Burgess,et al.  Genomic atlas of the human plasma proteome , 2018, Nature.

[10]  Yuri Kotliarov,et al.  Assessment of Variability in the SOMAscan Assay , 2017, Scientific Reports.

[11]  Haixu Tang,et al.  On the privacy risks of sharing clinical proteomics data , 2016, CRI.

[12]  E. Regan,et al.  Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD , 2016, PLoS genetics.

[13]  L. Beskow Lessons from HeLa Cells: The Ethics and Policy of Biospecimens , 2016, Annual review of genomics and human genetics.

[14]  Christoph Lange,et al.  Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. , 2014, The Lancet. Respiratory medicine.

[15]  Lisa M LaVange,et al.  Design of the Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS) , 2013, Thorax.

[16]  Latanya Sweeney,et al.  Identifying Participants in the Personal Genome Project by Name , 2013, ArXiv.

[17]  K. Hao,et al.  Bayesian method to predict individual SNP genotypes from gene expression data , 2012, Nature Genetics.

[18]  Andrey A. Shabalin,et al.  Matrix eQTL: ultra fast eQTL analysis via large matrix operations , 2011, Bioinform..

[19]  E. Regan,et al.  Genetic Epidemiology of COPD (COPDGene) Study Design , 2011, COPD.

[20]  Philip S. Yu,et al.  Privacy-Preserving Data Mining - Models and Algorithms , 2008, Advances in Database Systems.

[21]  Michael Gertz,et al.  Handbook of Database Security - Applications and Trends , 2007, Handbook of Database Security.

[22]  Cesare Furlanello,et al.  Machine learning methods for predictive proteomics , 2007, Briefings Bioinform..

[23]  Ninghui Li,et al.  t-Closeness: Privacy Beyond k-Anonymity and l-Diversity , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[24]  R. Kronmal,et al.  Multi-Ethnic Study of Atherosclerosis: objectives and design. , 2002, American journal of epidemiology.

[25]  Ramakrishnan Srikant,et al.  Hippocratic Databases , 2002, VLDB.

[26]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[27]  A. Jeffreys,et al.  Individual-specific ‘fingerprints’ of human DNA , 1985, Nature.

[28]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[29]  A. Svejgaard,et al.  [Genetic epidemiology]. , 2003, Ugeskrift for laeger.

[30]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.