Erratic noise suppression using iterative structure‐oriented space‐varying median filtering with sparsity constraint

ABSTRACT Erratic noise often has high amplitudes and a non‐Gaussian distribution. Least‐squares–based approaches therefore are not optimal. This can be handled better with non–least‐squares approaches, for example based on Huber norm which is computationally expensive. An alternative method has been published which involves transforming the data with erratic noise to pseudodata that have Gaussian distributed noise. It can then be attenuated using traditional least‐squares approaches. This alternative method has previously been used in combination with a curvelet transform in an iterative scheme. In this paper, we introduce a median‐filtering step in this iterative scheme. The median filter is applied following the slope direction of the seismic data to maximally preserve the energy of useful signals. The new method can suppress stronger erratic noise compared with the previous iterative method, and can better deal with random noise compared with the single‐step implementation of the median filter. We apply the proposed robust denoising algorithm to a synthetic dataset and two field data examples and demonstrate its advantages over three different noise attenuation algorithms.

[1]  Thomas C. M. Lee,et al.  Matrix Completion with Noisy Entries and Outliers , 2015, J. Mach. Learn. Res..

[2]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[3]  Qiang Zhao,et al.  Signal-Preserving Erratic Noise Attenuation via Iterative Robust Sparsity-Promoting Filter , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[4]  L. Canales Random Noise Reduction , 1984 .

[5]  Jingwei Hu,et al.  Iterative deblending of simultaneous-source seismic data using seislet-domain shaping regularization , 2014 .

[6]  Mauricio D. Sacchi,et al.  Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data , 2010 .

[7]  Yang Liu,et al.  A 1D time-varying median filter for seismic random, spike-like noise elimination , 2009 .

[8]  Chao Li,et al.  Weighted Multisteps Adaptive Autoregression for Seismic Image Denoising , 2018, IEEE Geoscience and Remote Sensing Letters.

[9]  Chao Li,et al.  Multidimensional Seismic Data Reconstruction Using Frequency-Domain Adaptive Prediction-Error Filter , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Derman Dondurur,et al.  Application of complex-trace analysis to seismic data for random-noise suppression and temporal resolution improvement , 2006 .

[11]  Alan Ryder,et al.  Swell-noise Attenuation Using an Iterative FX Prediction Filtering Approach , 2008 .

[12]  S. Mostafa Mousavi,et al.  Hybrid Seismic Denoising Using Higher-Order Statistics and Improved Wavelet Block Thresholding , 2016 .

[13]  Wenkai Lu,et al.  Edge-preserving polynomial fitting method to suppress random seismic noise , 2009 .

[14]  Derman Dondurur,et al.  Swell Noise Suppression by Wiener Prediction Filter , 2012 .

[15]  Mauricio D. Sacchi,et al.  Reweighting strategies in seismic deconvolution , 1997 .

[16]  Mauricio D. Sacchi,et al.  Robust f‐x projection filtering for simultaneous random and erratic seismic noise attenuation , 2017 .

[17]  George A. McMechan,et al.  Automatic editing of noisy seismic data , 1989 .

[18]  D. J. Verschuur,et al.  Surface-related multiple leakage extraction using local primary-and-multiple orthogonalization , 2020 .

[19]  Lexing Ying,et al.  3D discrete curvelet transform , 2005, SPIE Optics + Photonics.

[20]  J. Tukey,et al.  The Fitting of Power Series, Meaning Polynomials, Illustrated on Band-Spectroscopic Data , 1974 .

[21]  Sergey Fomel,et al.  Local seismic attributes , 2007 .

[22]  S. Mostafa Mousavi,et al.  Automatic microseismic denoising and onset detection using the synchrosqueezed continuous wavelet transform , 2016 .

[23]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[24]  Yongjun Zhang,et al.  Large-Scale Remote Sensing Image Retrieval by Deep Hashing Neural Networks , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Guochang Liu,et al.  Random noise attenuation using f-x regularized nonstationary autoregression , 2012 .

[26]  Xiaohong Chen,et al.  Noncausal f–x–y regularized nonstationary prediction filtering for random noise attenuation on 3D seismic data , 2013 .

[27]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[28]  S. Mostafa Mousavi,et al.  Adaptive noise estimation and suppression for improving microseismic event detection , 2016 .

[29]  Yangkang Chen,et al.  Simultaneous denoising and interpolation of 2D seismic data using data-driven non-negative dictionary learning , 2017, Signal Process..

[30]  M. Sacchi,et al.  Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis , 2011 .

[31]  David Halliday,et al.  Interferometric surface-wave isolation and removal , 2007 .

[32]  D. J. Verschuur,et al.  Adaptive surface-related multiple elimination , 1992 .

[33]  Yangkang Chen,et al.  Deblending using a space-varying median filter , 2014 .

[34]  Mauricio D. Sacchi,et al.  Robust reduced-rank filtering for erratic seismic noise attenuation , 2015 .

[35]  Yangkang Chen,et al.  Separation of simultaneous sources using a structural-oriented median filter in the flattened dimension , 2016, Comput. Geosci..

[36]  Yangkang Chen,et al.  Random noise attenuation using local signal-and-noise orthogonalization , 2015 .

[37]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[38]  Yang Liu,et al.  Seislet transform and seislet frame , 2010 .

[39]  Yusuf Bayrak,et al.  Using the Wiener-Levinson algorithm to suppress ground-roll , 2004 .

[40]  Guochang Liu,et al.  Nonlinear structure‐enhancing filtering using plane‐wave prediction * , 2010 .

[41]  Yangkang Chen,et al.  Data-driven multitask sparse dictionary learning for noise attenuation of 3D seismic data , 2017 .

[42]  S. Mostafa Mousavi,et al.  Seismic Signal Denoising and Decomposition Using Deep Neural Networks , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[43]  Douglas W. Nychka,et al.  The Role of Pseudo Data for Robust Smoothing with Application to Wavelet Regression , 2007 .

[44]  Yangkang Chen,et al.  Damped multichannel singular spectrum analysis for 3D random noise attenuation , 2016 .

[45]  D. J. Verschuur,et al.  Surface-Related Multiple Elimination:Application On Real Data , 1991 .

[46]  Gregory Beylkin,et al.  Discrete radon transform , 1987, IEEE Trans. Acoust. Speech Signal Process..

[47]  Derman Dondurur,et al.  A mean-based filter to remove power line harmonic noise from seismic reflection data , 2018 .

[48]  J. Claerbout,et al.  Lateral prediction for noise attenuation by t-x and f-x techniques , 1995 .