Efficient and validated simulation of crowds for an evacuation assistant

To improve safety at mass events, an evacuation assistant that supports security services in case of emergencies is developed. One central aspect is forecasting the emergency egress of large crowds in complex buildings. This requires realistic models of pedestrian dynamics that can be simulated faster than real‐time by using methods applied in high performance computing. We give an overview of the project and present the actual results. We also describe the modeling approaches used thereby focusing on the runtime optimization and parallelization concepts. Copyright © 2012 John Wiley & Sons, Ltd.

[1]  L. R. Scott,et al.  Parallelizing molecular dynamics using spatial decomposition , 1994, Proceedings of IEEE Scalable High Performance Computing Conference.

[2]  Craig W. Reynolds Big fast crowds on PS3 , 2006, Sandbox '06.

[3]  A. Schadschneider,et al.  Simulation of pedestrian dynamics using a two dimensional cellular automaton , 2001 .

[4]  Armin Seyfried,et al.  Hermes - an Evacuation Assistant for Mass Events , 2009 .

[5]  Steven J. Plimpton,et al.  Parallel Molecular Dynamics Algorithms for Simulation of Molecular Systems , 1995 .

[6]  Jean-Paul Laumond,et al.  Real-time navigating crowds: scalable simulation and rendering: Research Articles , 2006 .

[7]  M. Tahar Kechadi,et al.  Dynamic Domain Decomposition and Load Balancing for Parallel Simulations of Long-Chained Molecules , 1995, PARA.

[8]  A. Schadschneider,et al.  Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics , 2004 .

[9]  Message Passing Interface Forum MPI: A message - passing interface standard , 1994 .

[10]  Shaowen Wang,et al.  A quadtree approach to domain decomposition for spatial interpolation in Grid computing environments , 2003, Parallel Comput..

[11]  Armin Seyfried,et al.  Comparative Investigation of the Dynamic Simulation of Foot Traffic Flow , 2007 .

[12]  Andreas Schadschneider,et al.  Empirical Results for Pedestrian Dynamics and their Implications for Cellular Automata Models , 2009 .

[13]  Rohit Chandra,et al.  Parallel programming in openMP , 2000 .

[14]  Edwin R. Galea,et al.  Evacuation modelling analysis within the operational research context : A combined approach for improving enclosure designs , 2009 .

[15]  Tony White,et al.  Macroscopic effects of microscopic forces between agents in crowd models , 2007 .

[16]  Hiroshi Tsukaguchi,et al.  A new method for evaluation of level of service in pedestrian facilities , 1987 .

[17]  Harry Gifford Crowd Simulation , 2013 .

[18]  Eric W. Marchant,et al.  A computer model for the evacuation of large building populations , 1995 .

[19]  A. Schadschneider Cellular Automaton Approach to Pedestrian Dynamics - Theory , 2001, cond-mat/0112117.

[20]  Andreas Schadschneider,et al.  I'm a football fan... get me out of here , 2010 .

[21]  John J. Fruin,et al.  Pedestrian planning and design , 1971 .

[22]  Daichi Yanagisawa,et al.  Simulation of space acquisition process of pedestrians using Proxemic Floor Field Model , 2012 .

[23]  Mohcine Chraibi,et al.  Parallel real time computation of large scale pedestrian evacuations , 2013, Adv. Eng. Softw..

[24]  Debashish Chowdhury,et al.  Stochastic Transport in Complex Systems: From Molecules to Vehicles , 2010 .

[25]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[26]  Stefan Holl,et al.  Modeling the Dynamic Route Choice of Pedestrians to Assess the Criticality of Building Evacuation , 2011, Adv. Complex Syst..

[27]  Andreas Schadschneider,et al.  Evacuation Dynamics: Empirical Results, Modeling and Applications , 2008, Encyclopedia of Complexity and Systems Science.

[28]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  J. Zittartz,et al.  Cellular Automaton Approach to Pedestrian Dynamics - Applications , 2001, cond-mat/0112119.

[30]  Michael Griebel,et al.  Numerical Simulation in Molecular Dynamics: Numerics, Algorithms, Parallelization, Applications , 2007 .

[31]  Michael J. Quinn,et al.  PARALLEL IMPLEMENTATION OF THE SOCIAL FORCES MODEL , 2003 .

[32]  Laura Ricci,et al.  Load Balancing by Domain Decomposition:the Bounded Neighbour Approach , 2003 .

[33]  Bernd Mohr,et al.  The Scalasca performance toolset architecture , 2010, Concurr. Comput. Pract. Exp..

[34]  Godehard Sutmann,et al.  Optimization of neighbor list techniques in liquid matter simulations , 2006 .

[35]  Andreas Schadschneider,et al.  Friction effects and clogging in a cellular automaton model for pedestrian dynamics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Bernhard Steffen,et al.  New Insights into Pedestrian Flow Through Bottlenecks , 2009, Transp. Sci..

[37]  S. Dai,et al.  Centrifugal force model for pedestrian dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  D. Romano,et al.  A HIGH PERFORMANCE FRAMEWORK FOR AGENT BASED PEDESTRIAN DYNAMICS ON GPU HARDWARE , 2008 .

[39]  Mohcine Chraibi,et al.  Generalized centrifugal-force model for pedestrian dynamics. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[41]  Daniel Thalmann,et al.  Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cav.147 , 2022 .

[42]  Mohcine Chraibi,et al.  Runtime Optimization of Force Based Models within the Hermes Project , 2011 .

[43]  Mohcine Chraibi,et al.  Force-based models of pedestrian dynamics , 2011, Networks Heterog. Media.

[44]  M. Schreckenberg,et al.  Experimental study of pedestrian flow through a bottleneck , 2006, physics/0610077.

[45]  Michael Schreckenberg,et al.  Simulation of competitive egress behavior: comparison with aircraft evacuation data , 2003 .

[46]  Protein calculations on parallel processors. II. Parallel algorithm for the forces and molecular dynamics , 1992 .

[47]  Harri Ehtamo,et al.  FDS+Evac: An Agent Based Fire Evacuation Model , 2010 .

[48]  Andreas Schadschneider,et al.  Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics , 2002 .

[49]  B. D. Hankin,et al.  Passenger Flow in Subways , 1958 .

[50]  Kai Nagel,et al.  An Improved Framework for Large-Scale Multi-Agent Sim- ulations of Travel Behavior , 2004 .