Incremental unknowns, multilevel methods and the numerical simulation of turbulence

Abstract The purpose of this monograph is to describe the dynamic multilevel (DML) methodology applied to the numerical simulation of turbulence. The general setting of the Navier—Stokes equations is recalled, and also a number of basic notions on the statistical theory of turbulence. The practical limitations of direct numerical simulation (DNS) and the needs for modeling are emphasized. The objective of this article is to discuss the modeling and the numerical simulation of turbulent flows by multilevel methods related to the concept of approximate inertial manifolds (AIM). This mathematical concept stemming from the dynamical systems theory is briefly presented; AIM are based on a decomposition of the velocity field into small and large scale components; they give a slaving law of the small scales as a function of the large scales. The novel aspect of the work presented here is the time adaptative dynamical implementation of these multilevel methods. Indeed the DML methodology is based on the properties of this decomposition of the velocity field and on numerical arguments. Numerical analysis of multilevel methods for a simple system is proposed. DML methods, with some numerical and physical justifications, are described for homogeneous turbulence. The numerical results obtained are discussed.

[1]  R. Temam,et al.  Nonlinear Galerkin methods: The finite elements case , 1990 .

[2]  H. Rose Eddy diffusivity, eddy noise and subgrid-scale modelling , 1977, Journal of Fluid Mechanics.

[3]  T. Kármán,et al.  On the statistical theory of turbulence , 1937 .

[4]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[5]  G. Vahala,et al.  Renormalization-group theory for the eddy viscosity in subgrid modeling. , 1988, Physical review. A, General physics.

[6]  S. Orszag,et al.  Renormalization group analysis of turbulence. I. Basic theory , 1986, Physical review letters.

[7]  R. Temam,et al.  Modelling of the interaction of small and large eddies in two dimensional turbulent flows , 1988 .

[8]  R. Temam,et al.  Variétés inertielles des équations différentielles dissipatives , 1985 .

[9]  R. Temam,et al.  Convergent families of approximate inertial manifolds , 1994 .

[10]  Javier Jiménez,et al.  The structure of intense vorticity in isotropic turbulence , 1993, Journal of Fluid Mechanics.

[11]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[12]  Roger Temam Stability analysis of the nonlinear Galerkin method , 1991 .

[13]  Roger Temam,et al.  Induced trajectories and approximate inertial manifolds , 1989 .

[14]  R. Temam,et al.  Nonlinear Galerkin methods , 1989 .

[15]  R. Temam,et al.  The nonlinear galerkin method applied to the simulation of turbulence in a channel flow , 1993 .

[16]  A. Debussche,et al.  IC S THE NONLINEAR GALERKIN METHOD : A MULTI-SCALE METHOD APPLIED TO THE SIMULATION OF HOMOGENEOUS TURBULENT FLOWS , 2022 .

[17]  Edriss S. Titi,et al.  On approximate Inertial Manifolds to the Navier-Stokes equations , 1990 .

[18]  Iosif Ilitch Gikhman,et al.  Introduction to the theory of random processes , 1969 .

[19]  O. Reynolds On the dynamical theory of incompressible viscous fluids and the determination of the criterion , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[20]  D. Lilly,et al.  A proposed modification of the Germano subgrid‐scale closure method , 1992 .

[21]  Jacques Laminie,et al.  Dynamical Multilevel Schemes for the Solution of Evolution Equations by Hierarchical Finite Element , 1997 .

[22]  Roger Temam,et al.  A nonlinear Galerkin method for the Navier-Stokes equations , 1990 .

[23]  François Jauberteau,et al.  Résolution numérique des équations de Navier-Stokes instationnaires par méthodes spectrales : méthode de Galerkin non linéaire , 1990 .

[24]  O. P. Manley The dissipation range spectrum , 1992 .

[25]  Charles G. Speziale,et al.  ANALYTICAL METHODS FOR THE DEVELOPMENT OF REYNOLDS-STRESS CLOSURES IN TURBULENCE , 1990 .

[26]  Ricardo H. Nochetto,et al.  Boundary value problems for partial differential equations and applications , 1993 .

[27]  David R. Nelson,et al.  Large-distance and long-time properties of a randomly stirred fluid , 1977 .

[28]  A. Vincent,et al.  The spatial structure and statistical properties of homogeneous turbulence , 1991, Journal of Fluid Mechanics.

[29]  R. Kraichnan Inertial Ranges in Two‐Dimensional Turbulence , 1967 .

[30]  R. Temam Navier-Stokes Equations , 1977 .

[31]  R. Temam,et al.  Determining modes and fractal dimension of turbulent flows , 1985, Journal of Fluid Mechanics.

[32]  G. Sell,et al.  On the computation of inertial manifolds , 1988 .

[33]  S. Orszag,et al.  Renormalization group analysis of turbulence. I. Basic theory , 1986 .

[34]  S. Pope PDF methods for turbulent reactive flows , 1985 .

[35]  R. Temam,et al.  Solution of the incompressible Navier-Stokes equations by the nonlinear Galerkin method , 1993 .

[36]  P. Moin,et al.  A dynamic localization model for large-eddy simulation of turbulent flows , 1995, Journal of Fluid Mechanics.

[37]  R. Temam,et al.  Implementation of finite element nonlinear Galerkin methods using hierarchical bases , 1993 .

[38]  J. B. Burie,et al.  Multilevel Methods in Space and Time for the Navier--Stokes Equations , 1997 .

[39]  R. Temam,et al.  Inertial manifolds and the slow manifolds in meteorology , 1991, Differential and Integral Equations.

[40]  Roger Temam,et al.  Incremental unknowns for solving partial differential equations , 1991 .

[41]  Roger Temam,et al.  The nonlinear Galerkin method in computational fluid dynamics , 1990 .

[42]  Steven A. Orszag,et al.  Structure and dynamics of homogeneous turbulence: models and simulations , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[43]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[44]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[45]  Jie Shen,et al.  Efficient Spectral-Galerkin Method II. Direct Solvers of Second- and Fourth-Order Equations Using Chebyshev Polynomials , 1995, SIAM J. Sci. Comput..

[46]  P. Moin,et al.  Numerical investigation of turbulent channel flow , 1981, Journal of Fluid Mechanics.

[47]  T. A. Zang,et al.  Toward the large-eddy simulation of compressible turbulent flows , 1990, Journal of Fluid Mechanics.

[48]  P. Moin,et al.  The basic equations for the large eddy simulation of turbulent flows in complex geometry , 1995 .

[49]  Robert McDougall Kerr,et al.  Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence , 1983, Journal of Fluid Mechanics.

[50]  S. Orszag Analytical theories of turbulence , 1970, Journal of Fluid Mechanics.

[51]  C. G. Speziale Galilean invariance of subgrid-scale stress models in the large-eddy simulation of turbulence , 1985, Journal of Fluid Mechanics.

[52]  A. S. Monin,et al.  Statistical Fluid Mechanics: The Mechanics of Turbulence , 1998 .

[53]  W. C. Reynolds,et al.  The dissipation‐range spectrum and the velocity‐derivative skewness in turbulent flows , 1991 .

[54]  Jie Shen,et al.  Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..

[55]  G. Batchelor,et al.  The theory of homogeneous turbulence , 1954 .

[56]  Marcel Lesieur,et al.  Turbulence in fluids , 1990 .

[57]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[58]  J. Ferziger,et al.  Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows , 1983 .

[59]  Roger Temam,et al.  Incremental unknowns for solving nonlinear eigenvalue problems: New multiresolution methods , 1995 .

[60]  Shiyi Chen,et al.  On statistical correlations between velocity increments and locally averaged dissipation in homogeneous turbulence , 1993 .

[61]  G. Vahala,et al.  A critical look at the use of filters in large eddy simulation , 1989 .

[62]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[63]  Arnaud Debussche,et al.  Approximation of exponential order of the attractor of a turbulent flow , 1994 .

[64]  G. Sell,et al.  Inertial manifolds for nonlinear evolutionary equations , 1988 .

[65]  D. Leslie,et al.  The application of turbulence theory to the formulation of subgrid modelling procedures , 1979, Journal of Fluid Mechanics.

[66]  T. Dubois Simulation numerique d'ecoulements homogenes et non homogenes par des methodes multi resolution , 1993 .

[67]  J. Deardorff A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers , 1970, Journal of Fluid Mechanics.

[68]  R. Temam,et al.  Implementation and numerical analysis of the nonlinear Galerkin methods with finite elements discretization , 1994 .

[69]  Donald A. Jones,et al.  On the effectiveness of the approximate inertial manifold—a computational study , 1995 .

[70]  Roger Temam,et al.  Inertial manifolds and multigrid methods , 1990 .

[71]  Vincent Liu A sharp lower bound for the Hausdorff dimension of the global attractors of the 2D Navier-Stokes equations , 1993 .

[72]  Jean-Paul Chehab A nonlinear adaptative multiresolution method in finite differences with incremental unknowns , 1995 .

[73]  R. Temam,et al.  Attractors Representing Turbulent Flows , 1985 .

[74]  M. Vishik,et al.  Attractors of partial differential evolution equations and estimates of their dimension , 1983 .

[75]  Roger Temam,et al.  Incremental Unknowns in Finite Differences: Condition Number of the Matrix , 1993, SIAM J. Matrix Anal. Appl..