Incremental unknowns, multilevel methods and the numerical simulation of turbulence
暂无分享,去创建一个
[1] R. Temam,et al. Nonlinear Galerkin methods: The finite elements case , 1990 .
[2] H. Rose. Eddy diffusivity, eddy noise and subgrid-scale modelling , 1977, Journal of Fluid Mechanics.
[3] T. Kármán,et al. On the statistical theory of turbulence , 1937 .
[4] R. Temam. Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .
[5] G. Vahala,et al. Renormalization-group theory for the eddy viscosity in subgrid modeling. , 1988, Physical review. A, General physics.
[6] S. Orszag,et al. Renormalization group analysis of turbulence. I. Basic theory , 1986, Physical review letters.
[7] R. Temam,et al. Modelling of the interaction of small and large eddies in two dimensional turbulent flows , 1988 .
[8] R. Temam,et al. Variétés inertielles des équations différentielles dissipatives , 1985 .
[9] R. Temam,et al. Convergent families of approximate inertial manifolds , 1994 .
[10] Javier Jiménez,et al. The structure of intense vorticity in isotropic turbulence , 1993, Journal of Fluid Mechanics.
[11] R. Temam. Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .
[12] Roger Temam. Stability analysis of the nonlinear Galerkin method , 1991 .
[13] Roger Temam,et al. Induced trajectories and approximate inertial manifolds , 1989 .
[14] R. Temam,et al. Nonlinear Galerkin methods , 1989 .
[15] R. Temam,et al. The nonlinear galerkin method applied to the simulation of turbulence in a channel flow , 1993 .
[16] A. Debussche,et al. IC S THE NONLINEAR GALERKIN METHOD : A MULTI-SCALE METHOD APPLIED TO THE SIMULATION OF HOMOGENEOUS TURBULENT FLOWS , 2022 .
[17] Edriss S. Titi,et al. On approximate Inertial Manifolds to the Navier-Stokes equations , 1990 .
[18] Iosif Ilitch Gikhman,et al. Introduction to the theory of random processes , 1969 .
[19] O. Reynolds. On the dynamical theory of incompressible viscous fluids and the determination of the criterion , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[20] D. Lilly,et al. A proposed modification of the Germano subgrid‐scale closure method , 1992 .
[21] Jacques Laminie,et al. Dynamical Multilevel Schemes for the Solution of Evolution Equations by Hierarchical Finite Element , 1997 .
[22] Roger Temam,et al. A nonlinear Galerkin method for the Navier-Stokes equations , 1990 .
[23] François Jauberteau,et al. Résolution numérique des équations de Navier-Stokes instationnaires par méthodes spectrales : méthode de Galerkin non linéaire , 1990 .
[24] O. P. Manley. The dissipation range spectrum , 1992 .
[25] Charles G. Speziale,et al. ANALYTICAL METHODS FOR THE DEVELOPMENT OF REYNOLDS-STRESS CLOSURES IN TURBULENCE , 1990 .
[26] Ricardo H. Nochetto,et al. Boundary value problems for partial differential equations and applications , 1993 .
[27] David R. Nelson,et al. Large-distance and long-time properties of a randomly stirred fluid , 1977 .
[28] A. Vincent,et al. The spatial structure and statistical properties of homogeneous turbulence , 1991, Journal of Fluid Mechanics.
[29] R. Kraichnan. Inertial Ranges in Two‐Dimensional Turbulence , 1967 .
[30] R. Temam. Navier-Stokes Equations , 1977 .
[31] R. Temam,et al. Determining modes and fractal dimension of turbulent flows , 1985, Journal of Fluid Mechanics.
[32] G. Sell,et al. On the computation of inertial manifolds , 1988 .
[33] S. Orszag,et al. Renormalization group analysis of turbulence. I. Basic theory , 1986 .
[34] S. Pope. PDF methods for turbulent reactive flows , 1985 .
[35] R. Temam,et al. Solution of the incompressible Navier-Stokes equations by the nonlinear Galerkin method , 1993 .
[36] P. Moin,et al. A dynamic localization model for large-eddy simulation of turbulent flows , 1995, Journal of Fluid Mechanics.
[37] R. Temam,et al. Implementation of finite element nonlinear Galerkin methods using hierarchical bases , 1993 .
[38] J. B. Burie,et al. Multilevel Methods in Space and Time for the Navier--Stokes Equations , 1997 .
[39] R. Temam,et al. Inertial manifolds and the slow manifolds in meteorology , 1991, Differential and Integral Equations.
[40] Roger Temam,et al. Incremental unknowns for solving partial differential equations , 1991 .
[41] Roger Temam,et al. The nonlinear Galerkin method in computational fluid dynamics , 1990 .
[42] Steven A. Orszag,et al. Structure and dynamics of homogeneous turbulence: models and simulations , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[43] P. Moin,et al. A dynamic subgrid‐scale eddy viscosity model , 1990 .
[44] C. Canuto. Spectral methods in fluid dynamics , 1991 .
[45] Jie Shen,et al. Efficient Spectral-Galerkin Method II. Direct Solvers of Second- and Fourth-Order Equations Using Chebyshev Polynomials , 1995, SIAM J. Sci. Comput..
[46] P. Moin,et al. Numerical investigation of turbulent channel flow , 1981, Journal of Fluid Mechanics.
[47] T. A. Zang,et al. Toward the large-eddy simulation of compressible turbulent flows , 1990, Journal of Fluid Mechanics.
[48] P. Moin,et al. The basic equations for the large eddy simulation of turbulent flows in complex geometry , 1995 .
[49] Robert McDougall Kerr,et al. Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence , 1983, Journal of Fluid Mechanics.
[50] S. Orszag. Analytical theories of turbulence , 1970, Journal of Fluid Mechanics.
[51] C. G. Speziale. Galilean invariance of subgrid-scale stress models in the large-eddy simulation of turbulence , 1985, Journal of Fluid Mechanics.
[52] A. S. Monin,et al. Statistical Fluid Mechanics: The Mechanics of Turbulence , 1998 .
[53] W. C. Reynolds,et al. The dissipation‐range spectrum and the velocity‐derivative skewness in turbulent flows , 1991 .
[54] Jie Shen,et al. Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..
[55] G. Batchelor,et al. The theory of homogeneous turbulence , 1954 .
[56] Marcel Lesieur,et al. Turbulence in fluids , 1990 .
[57] D. Gottlieb,et al. Numerical analysis of spectral methods : theory and applications , 1977 .
[58] J. Ferziger,et al. Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows , 1983 .
[59] Roger Temam,et al. Incremental unknowns for solving nonlinear eigenvalue problems: New multiresolution methods , 1995 .
[60] Shiyi Chen,et al. On statistical correlations between velocity increments and locally averaged dissipation in homogeneous turbulence , 1993 .
[61] G. Vahala,et al. A critical look at the use of filters in large eddy simulation , 1989 .
[62] J. Smagorinsky,et al. GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .
[63] Arnaud Debussche,et al. Approximation of exponential order of the attractor of a turbulent flow , 1994 .
[64] G. Sell,et al. Inertial manifolds for nonlinear evolutionary equations , 1988 .
[65] D. Leslie,et al. The application of turbulence theory to the formulation of subgrid modelling procedures , 1979, Journal of Fluid Mechanics.
[66] T. Dubois. Simulation numerique d'ecoulements homogenes et non homogenes par des methodes multi resolution , 1993 .
[67] J. Deardorff. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers , 1970, Journal of Fluid Mechanics.
[68] R. Temam,et al. Implementation and numerical analysis of the nonlinear Galerkin methods with finite elements discretization , 1994 .
[69] Donald A. Jones,et al. On the effectiveness of the approximate inertial manifold—a computational study , 1995 .
[70] Roger Temam,et al. Inertial manifolds and multigrid methods , 1990 .
[71] Vincent Liu. A sharp lower bound for the Hausdorff dimension of the global attractors of the 2D Navier-Stokes equations , 1993 .
[72] Jean-Paul Chehab. A nonlinear adaptative multiresolution method in finite differences with incremental unknowns , 1995 .
[73] R. Temam,et al. Attractors Representing Turbulent Flows , 1985 .
[74] M. Vishik,et al. Attractors of partial differential evolution equations and estimates of their dimension , 1983 .
[75] Roger Temam,et al. Incremental Unknowns in Finite Differences: Condition Number of the Matrix , 1993, SIAM J. Matrix Anal. Appl..