Post-quantum Cryptography and a (Qu)Bit More
暂无分享,去创建一个
[1] Ralph C. Merkle,et al. Secrecy, authentication, and public key systems , 1979 .
[2] Tanja Lange,et al. Attacking and defending the McEliece cryptosystem , 2008, IACR Cryptol. ePrint Arch..
[3] María Naya-Plasencia,et al. Hidden Shift Quantum Cryptanalysis and Implications , 2018, IACR Cryptol. ePrint Arch..
[4] Jacques Patarin,et al. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms , 1996, EUROCRYPT.
[5] Isaac L. Chuang,et al. Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .
[6] Lov K. Grover. A fast quantum mechanical algorithm for database search , 1996, STOC '96.
[7] Hideki Imai,et al. Public Quadratic Polynominal-Tuples for Efficient Signature-Verification and Message-Encryption , 1988, EUROCRYPT.
[8] Oded Regev,et al. Lattice-Based Cryptography , 2006, CRYPTO.
[9] Tommaso Gagliardoni,et al. Unforgeable Quantum Encryption , 2017, IACR Cryptol. ePrint Arch..
[10] Joseph H. Silverman,et al. NTRU: A Ring-Based Public Key Cryptosystem , 1998, ANTS.
[11] Vincent Rijmen,et al. The Design of Rijndael , 2002, Information Security and Cryptography.
[12] Peter Schwabe,et al. SPHINCS: Practical Stateless Hash-Based Signatures , 2015, EUROCRYPT.
[13] N. Taleb. Antifragile: Things That Gain from Disorder , 2012 .
[14] Umesh V. Vazirani,et al. Quantum complexity theory , 1993, STOC.
[15] Vincent Rijmen,et al. The Design of Rijndael: AES - The Advanced Encryption Standard , 2002 .
[16] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[17] Gilles Brassard,et al. Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..
[18] María Naya-Plasencia,et al. Breaking Symmetric Cryptosystems Using Quantum Period Finding , 2016, CRYPTO.
[19] Daniel R. Simon,et al. On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[20] Miklós Ajtai,et al. Generating hard instances of lattice problems (extended abstract) , 1996, STOC '96.
[21] David Jao,et al. Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies , 2014, J. Math. Cryptol..
[22] R. Feynman. Simulating physics with computers , 1999 .
[23] Jacques Stern,et al. Cryptanalysis of the Ajtai-Dwork Cryptosystem , 1998, CRYPTO.
[24] Steven D. Galbraith,et al. Computing isogenies between supersingular elliptic curves over Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mat , 2013, Designs, Codes and Cryptography.
[25] Alexander Russell,et al. Quantum-Secure Symmetric-Key Cryptography Based on Hidden Shifts , 2016, EUROCRYPT.
[26] Daniel J. Bernstein,et al. Introduction to post-quantum cryptography , 2009 .
[27] Elwyn R. Berlekamp,et al. On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.
[28] Robert J. McEliece,et al. A public key cryptosystem based on algebraic coding theory , 1978 .
[29] María Naya-Plasencia. Symmetric Cryptography for Long-Term Security , 2017 .
[30] Whitfield Diffie,et al. Analysis of a Public Key Approach Based on Polynomial Substitution , 1985, CRYPTO.
[31] Cynthia Dwork,et al. A public-key cryptosystem with worst-case/average-case equivalence , 1997, STOC '97.
[32] Tommaso Gagliardoni,et al. Quantum Security of Cryptographic Primitives , 2017, ArXiv.