Semi-Lagrangian Methods for Level Set Equations
暂无分享,去创建一个
[1] G. Wulff,et al. XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen , 1901 .
[2] R. Courant,et al. On the solution of nonlinear hyperbolic differential equations by finite differences , 1952 .
[3] C. Truesdell,et al. The Classical Field Theories , 1960 .
[4] D. Kinderlehrer,et al. Morphological Stability of a Particle Growing by Diffusion or Heat Flow , 1963 .
[5] D. P. Woodruff,et al. The solid-liquid interface , 1974 .
[6] David G. Kirkpatrick,et al. Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..
[7] Janusz A. Pudykiewicz,et al. Some properties and comparative performance of the semi‐Lagrangian method of Robert in the solution of the advection‐diffusion equation , 1984 .
[8] J. Duchon,et al. Évolution d’une interface par capillarité et diffusion de volume I. Existence locale en temps , 1984 .
[9] J. Sethian,et al. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .
[10] Chee-Keng Yap,et al. AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..
[11] M. Grayson. The heat equation shrinks embedded plane curves to round points , 1987 .
[12] S. Osher,et al. Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .
[13] S. Osher,et al. Algorithms Based on Hamilton-Jacobi Formulations , 1988 .
[14] J. Strain. A boundary integral approach to unstable solidification , 1989 .
[15] R. Sekerka,et al. A numerical study of two-dimensional crystal growth forms in the presence of anisotropic growth kinetics , 1989 .
[16] Philip J. Rasch,et al. On Shape-Preserving Interpolation and Semi-Lagrangian Transport , 1990, SIAM J. Sci. Comput..
[17] W. Grabowski,et al. The multidimensional positive definite advection transport algorithm: nonoscillatory option , 1990 .
[18] R. LeVeque. Numerical methods for conservation laws , 1990 .
[19] Philip J. Rasch,et al. Monotone Advection on the Sphere: An Eulerian Versus Semi-Lagrangian Approach , 1991 .
[20] A. Staniforth,et al. Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .
[21] L. Evans,et al. Motion of level sets by mean curvature. II , 1992 .
[22] R. L. Dobrushin,et al. Wulff Construction: A Global Shape from Local Interaction , 1992 .
[23] Piotr K. Smolarkiewicz,et al. A class of monotone interpolation schemes , 1992 .
[24] J. Sethian,et al. Crystal growth and dendritic solidification , 1992 .
[25] J. Taylor,et al. Overview No. 98 I—Geometric models of crystal growth , 1992 .
[26] P. Smolarkiewicz,et al. A class of semi-Lagrangian approximations for fluids. , 1992 .
[27] P. Lions,et al. User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.
[28] R. Almgren. Variational algorithms and pattern formation in dendritic solidification , 1993 .
[29] Maurizio Falcone. The minimum time problem and its applications to front propagation , 1994 .
[30] M. Falcone,et al. Level Sets of Viscosity Solutions: some Applications to Fronts and Rendez-vous Problems , 1994, SIAM J. Appl. Math..
[31] S. Osher,et al. A level set approach for computing solutions to incompressible two-phase flow , 1994 .
[32] Stephen J. Thomas,et al. The Cost-Effectiveness of Semi-Lagrangian Advection , 1996 .
[33] P. Makar,et al. Basis-Spline Interpolation on the Sphere: Applications to Semi-Lagrangian Advection , 1996 .
[34] A. Schmidt. Computation of Three Dimensional Dendrites with Finite Elements , 1996 .
[35] David G. Kirkpatrick,et al. A compact piecewise-linear voronoi diagram for convex sites in the plane , 1996, Discret. Comput. Geom..
[36] S. Osher,et al. THE WULFF SHAPE AS THE ASYMPTOTIC LIMIT OF A GROWING CRYSTALLINE INTERFACE , 1997 .
[37] John Strain,et al. Fast Adaptive 2D Vortex Methods , 1997 .
[38] S. Osher,et al. A Simple Level Set Method for Solving Stefan Problems , 1997, Journal of Computational Physics.
[39] S. Osher,et al. The Geometry of Wulff Crystal Shapes and Its Relations with Riemann Problems , 1998 .
[40] M. Falcone,et al. Convergence Analysis for a Class of High-Order Semi-Lagrangian Advection Schemes , 1998 .
[41] James A. Sethian,et al. The Fast Construction of Extension Velocities in Level Set Methods , 1999 .
[42] J. Strain. Tree Methods for Moving Interfaces , 1999 .