Semi-Lagrangian Methods for Level Set Equations

A new numerical method for solving geometric moving interface problems is presented. The method combines a level set approach and a semi-Lagrangian time stepping scheme which is explicit yet unconditionally stable. The combination decouples each mesh point from the others and the time step from the CFL stability condition, permitting the construction of methods which are efficient, adaptive, and modular. Analysis of a linear one-dimensional model problem suggests a surprising convergence criterion which is supported by heuristic arguments and confirmed by an extensive collection of two-dimensional numerical results. The new method computes correct viscosity solutions to problems involving geometry, anisotropy, curvature, and complex topological events.

[1]  G. Wulff,et al.  XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen , 1901 .

[2]  R. Courant,et al.  On the solution of nonlinear hyperbolic differential equations by finite differences , 1952 .

[3]  C. Truesdell,et al.  The Classical Field Theories , 1960 .

[4]  D. Kinderlehrer,et al.  Morphological Stability of a Particle Growing by Diffusion or Heat Flow , 1963 .

[5]  D. P. Woodruff,et al.  The solid-liquid interface , 1974 .

[6]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[7]  Janusz A. Pudykiewicz,et al.  Some properties and comparative performance of the semi‐Lagrangian method of Robert in the solution of the advection‐diffusion equation , 1984 .

[8]  J. Duchon,et al.  Évolution d’une interface par capillarité et diffusion de volume I. Existence locale en temps , 1984 .

[9]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[10]  Chee-Keng Yap,et al.  AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..

[11]  M. Grayson The heat equation shrinks embedded plane curves to round points , 1987 .

[12]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[13]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[14]  J. Strain A boundary integral approach to unstable solidification , 1989 .

[15]  R. Sekerka,et al.  A numerical study of two-dimensional crystal growth forms in the presence of anisotropic growth kinetics , 1989 .

[16]  Philip J. Rasch,et al.  On Shape-Preserving Interpolation and Semi-Lagrangian Transport , 1990, SIAM J. Sci. Comput..

[17]  W. Grabowski,et al.  The multidimensional positive definite advection transport algorithm: nonoscillatory option , 1990 .

[18]  R. LeVeque Numerical methods for conservation laws , 1990 .

[19]  Philip J. Rasch,et al.  Monotone Advection on the Sphere: An Eulerian Versus Semi-Lagrangian Approach , 1991 .

[20]  A. Staniforth,et al.  Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .

[21]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[22]  R. L. Dobrushin,et al.  Wulff Construction: A Global Shape from Local Interaction , 1992 .

[23]  Piotr K. Smolarkiewicz,et al.  A class of monotone interpolation schemes , 1992 .

[24]  J. Sethian,et al.  Crystal growth and dendritic solidification , 1992 .

[25]  J. Taylor,et al.  Overview No. 98 I—Geometric models of crystal growth , 1992 .

[26]  P. Smolarkiewicz,et al.  A class of semi-Lagrangian approximations for fluids. , 1992 .

[27]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[28]  R. Almgren Variational algorithms and pattern formation in dendritic solidification , 1993 .

[29]  Maurizio Falcone The minimum time problem and its applications to front propagation , 1994 .

[30]  M. Falcone,et al.  Level Sets of Viscosity Solutions: some Applications to Fronts and Rendez-vous Problems , 1994, SIAM J. Appl. Math..

[31]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[32]  Stephen J. Thomas,et al.  The Cost-Effectiveness of Semi-Lagrangian Advection , 1996 .

[33]  P. Makar,et al.  Basis-Spline Interpolation on the Sphere: Applications to Semi-Lagrangian Advection , 1996 .

[34]  A. Schmidt Computation of Three Dimensional Dendrites with Finite Elements , 1996 .

[35]  David G. Kirkpatrick,et al.  A compact piecewise-linear voronoi diagram for convex sites in the plane , 1996, Discret. Comput. Geom..

[36]  S. Osher,et al.  THE WULFF SHAPE AS THE ASYMPTOTIC LIMIT OF A GROWING CRYSTALLINE INTERFACE , 1997 .

[37]  John Strain,et al.  Fast Adaptive 2D Vortex Methods , 1997 .

[38]  S. Osher,et al.  A Simple Level Set Method for Solving Stefan Problems , 1997, Journal of Computational Physics.

[39]  S. Osher,et al.  The Geometry of Wulff Crystal Shapes and Its Relations with Riemann Problems , 1998 .

[40]  M. Falcone,et al.  Convergence Analysis for a Class of High-Order Semi-Lagrangian Advection Schemes , 1998 .

[41]  James A. Sethian,et al.  The Fast Construction of Extension Velocities in Level Set Methods , 1999 .

[42]  J. Strain Tree Methods for Moving Interfaces , 1999 .