Neutron-Induced Failure in Silicon IGBTs, Silicon Super-Junction and SiC MOSFETs

50 MeV and 80 MeV neutron-induced failure is investigated for several types of power devices (super-junction, IGBT and SiC) from different vendors. A strong dependence on the device type and orientation is observed.

[1]  S. Liu,et al.  Evaluation of Worst-Case Test Conditions for SEE on Power DMOSFETs , 2006, 2006 IEEE Radiation Effects Data Workshop.

[2]  L. Scheick,et al.  Displacement damage-induced catastrophic second breakdown in silicon carbide Schottky power diodes , 2004, IEEE Transactions on Nuclear Science.

[3]  T. Kachi,et al.  Advanced SiC and GaN power electronics for automotive systems , 2010, 2010 International Electron Devices Meeting.

[4]  B. Jayant Baliga,et al.  Fundamentals of Power Semiconductor Devices , 2008 .

[5]  Marina Antoniou,et al.  Robustness of SuperJunction structures against cosmic ray induced breakdown , 2010 .

[6]  J. Titus,et al.  Worst-Case Test Conditions of SEGR for Power DMOSFETs , 2010, IEEE Transactions on Nuclear Science.

[7]  E. Normand,et al.  Guidelines for predicting single-event upsets in neutron environments (RAM devices) , 1991 .

[8]  N. Ikeda,et al.  Single-event burnout of Super-junction power MOSFETs , 2004, IEEE Transactions on Nuclear Science.

[9]  M. Ishiko,et al.  Neutron induced single-event burnout of IGBT , 2010, The 2010 International Power Electronics Conference - ECCE ASIA -.

[10]  Florin Udrea,et al.  Analysis of SEB and SEGR in super-junction MOSFETs , 2000 .

[11]  Sameer Pendharkar,et al.  Current status and future trends in silicon power devices , 2010, 2010 International Electron Devices Meeting.

[12]  J. van Duivenbode,et al.  An empiric approach to establishing MOSFET failure rate induced by Single-Event Burnout , 2008, 2008 13th International Power Electronics and Motion Control Conference.

[13]  Kenneth F. Galloway,et al.  Evaluation of SEGR threshold in power MOSFETs , 1994 .

[14]  M. T. Rahimo,et al.  Ultra high voltage semiconductor power devices for grid applications , 2010, 2010 International Electron Devices Meeting.

[15]  S. Kuboyama,et al.  Single-Event Burnout of Silicon Carbide Schottky Barrier Diodes Caused by High Energy Protons , 2007, IEEE Transactions on Nuclear Science.

[16]  Henry H. K. Tang,et al.  Nuclear physics of cosmic ray interaction with semiconductor materials: Particle-induced soft errors from a physicist's perspective , 1996, IBM J. Res. Dev..

[17]  F. W. Sexton,et al.  Destructive single-event effects in semiconductor devices and ICs , 2003 .

[18]  P. Dodd,et al.  Effects of Angle of Incidence on Proton and Neutron-Induced Single-Event Latchup , 2006, IEEE Transactions on Nuclear Science.

[19]  Ronald D. Schrimpf,et al.  A review of the techniques used for modeling single-event effects in power MOSFETs , 1996 .

[20]  E. Normand,et al.  First observations of power MOSFET burnout with high energy neutrons , 1996 .

[21]  E. Normand,et al.  Neutron-induced single event burnout in high voltage electronics , 1997 .

[22]  Arunjai Mittal,et al.  Energy efficiency enabled by power electronics , 2010, 2010 International Electron Devices Meeting.

[23]  Kimimori Hamada,et al.  Cosmic ray ruggedness of IGBTs for hybrid vehicles , 2010, 2010 22nd International Symposium on Power Semiconductor Devices & IC's (ISPSD).

[24]  G. Wachutka,et al.  Cosmic radiation-induced failure mechanism of high voltage IGBT , 2005, Proceedings. ISPSD '05. The 17th International Symposium on Power Semiconductor Devices and ICs, 2005..

[25]  F. Udrea,et al.  The 3.3kV Semi-SuperJunction IGBT for increased cosmic ray induced breakdown immunity , 2009, 2009 21st International Symposium on Power Semiconductor Devices & IC's.

[26]  N. Ikeda,et al.  Anomalous Charge Collection in Silicon Carbide Schottky Barrier Diodes and Resulting Permanent Damage and Single-Event Burnout , 2006, IEEE Transactions on Nuclear Science.