Perron–Frobenius type results on the numerical range
暂无分享,去创建一个
John Maroulas | Michael J. Tsatsomeros | Panayiotis Psarrakos | M. Tsatsomeros | J. Maroulas | P. Psarrakos
[1] Miroslav Fiedler,et al. Numerical range of matrices and Levinger's theorem , 1995 .
[2] B. Tam. On matrices with cyclic structure , 1999 .
[3] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[4] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[5] R. Kippenhahn. Über den Wertevorrat einer Matrix , 1951 .
[6] H. Shapiro. On a conjecture of Kippenhahn about the characteristic polynomial of a pencil generated by two Hermitian matrices. I , 1982 .
[7] F D Murnaghan,et al. On the Field of Values of a Square Matrix. , 1932, Proceedings of the National Academy of Sciences of the United States of America.
[8] Charles R. Johnson. NUMERICAL DETERMINATION OF THE FIELD OF VALUES OF A GENERAL COMPLEX MATRIX , 1978 .
[9] B. Tam,et al. On matrices whose numerical ranges have circular or weak circular symmetry , 1999 .
[10] Robert J. Plemmons,et al. Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.
[11] Chi-Kwong Li,et al. The numerical range of a nonnegative matrix , 2002 .
[12] Douglas R. Farenick,et al. Numerical radius of a multigraph , 1996, Ars Comb..
[13] Circularity of numerical ranges and block-shift matrices , 1994 .
[14] Robert Reams,et al. An inequality for nonnegative matrices and the inverse eigenvalue problem , 1996 .
[15] M. Fiedler. Geometry of the numerical range of matrices , 1981 .