High-resolution biosensor spectral peak shift estimation

In this paper, we present a maximum likelihood (ML) approach to high-resolution estimation of the shifts of a spectral signal. This spectral signal arises in application of optically based resonant biosensors, where high resolution in the estimation of signal shift is synonymous with high sensitivity to biological interactions. For the particular sensor of interest, the underlying signal is nonuniformly sampled and exhibits Poisson amplitude statistics. Shift estimation accuracies orders of magnitude finer than the sample spacing are sought. The new ML-based formulation leads to a solution approach different from typical resonance shift estimation methods based on polynomial fitting and peak (or null) estimation and tracking.

[1]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[2]  Peter Cheeseman,et al.  Super-Resolved Surface Reconstruction from Multiple Images , 1996 .

[3]  Dale Borowiak,et al.  Linear Models, Least Squares and Alternatives , 2001, Technometrics.

[4]  Karl S. Booksh,et al.  Performance comparison between high and low resolution spectrophotometers used in a white light surface plasmon resonance sensor , 1999 .

[5]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. , 2001, Advanced drug delivery reviews.

[6]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[7]  Michael Unser,et al.  Maximum likelihood estimation of liner signal parameters for Poisson processes , 1988, IEEE Trans. Acoust. Speech Signal Process..

[8]  Neil Genzlinger A. and Q , 2006 .

[9]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[10]  Ying Mu,et al.  An Optical Biosensor for Monitoring Antigen Recognition Based on Surface Plasmon Resonance Using Avidin-Biotin System , 2001 .

[11]  Mati Wax,et al.  Joint estimation of time delays and directions of arrival of multiple reflections of a known signal , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[12]  Chrysostomos L. Nikias,et al.  Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics , 1996, IEEE Trans. Signal Process..

[13]  C. Urbaniczky,et al.  Integrated fluid handling system for biomolecular interaction analysis. , 1991, Analytical chemistry.

[14]  B. Cunningham,et al.  A label-free optical technique for detecting small molecule interactions. , 2002, Biosensors & bioelectronics.

[15]  D G Myszka,et al.  High-resolution and high-throughput protocols for measuring drug/human serum albumin interactions using BIACORE. , 2001, Analytical biochemistry.

[16]  Andreas Jakobsson,et al.  Subspace-based estimation of time delays and Doppler shifts , 1998, IEEE Trans. Signal Process..

[17]  Yuri M. Shirshov,et al.  Bimetallic Layers Increase Sensitivity of Affinity Sensors Based on Surface Plasmon Resonance , 2002 .

[18]  Karl S. Booksh,et al.  Calibration of Surface Plasmon Resonance Refractometers Using Locally Weighted Parametric Regression , 1997 .

[19]  B. Liedberg,et al.  Surface plasmon resonance for gas detection and biosensing , 1983 .

[20]  B. Liedberg,et al.  Principles of biosensing with an extended coupling matrix and surface plasmon resonance , 1993 .

[21]  John A. Stuller,et al.  New perspectives for maximum likelihood time-delay estimation , 1997, IEEE Trans. Signal Process..

[22]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[23]  Benoit Champagne,et al.  Exact maximum likelihood time delay estimation , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[24]  G. Carter,et al.  Special issue on time delay estimation , 1980 .

[25]  Richard J. Vaccaro,et al.  A least-squares algorithm for multipath time-delay estimation , 1994, IEEE Trans. Signal Process..

[26]  Alfred O. Hero,et al.  Time delay estimation for filtered Poisson processes using an EM-type algorithm , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[27]  B. Liedberg,et al.  Biosensing with surface plasmon resonance--how it all started. , 1995, Biosensors & bioelectronics.

[28]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[29]  A. Lee Swindlehurst,et al.  Time delay and spatial signature estimation using known asynchronous signals , 1998, IEEE Trans. Signal Process..

[30]  Michael T. Orchard,et al.  A fast direct Fourier-based algorithm for subpixel registration of images , 2001, IEEE Trans. Geosci. Remote. Sens..

[31]  Russell C. Hardie,et al.  Joint MAP registration and high-resolution image estimation using a sequence of undersampled images , 1997, IEEE Trans. Image Process..