Exploring the NANOGrav signal and planet-mass primordial black holes through Higgs inflation

The data recently released by the North American Nanohertz Observatory for Gravitational Waves provides compelling evidence supporting the existence of a stochastic signal that aligns with a gravitational-wave background. We show this signal can be the scalar-induced gravitational waves from the Higgs inflation model with the parametric amplification mechanism. Such a gravitational-wave background naturally predicts the substantial existence of planet-mass primordial black holes, which can be planet 9 in our solar system and the lensing objects for the ultrashort-timescale microlensing events observed by the Optical Gravitational Lensing Experiment. The future observations of stochastic gravitational wave background by pulsar timing arrays and planet-mass primordial black holes provide such a possibility to give further confirmations on Higgs inflation, which unifies two fundamental aspects of theoretical physics, particle physics and cosmology.

[1]  M. Kawasaki,et al.  Enhancement of gravitational waves at Q-ball decay including non-linear density perturbations , 2023, Journal of Cosmology and Astroparticle Physics.

[2]  Rinku Maji,et al.  Supersymmetric $U(1)_{B-L}$ flat direction and NANOGrav 15 year data , 2023, 2308.11439.

[3]  M. Raidal,et al.  What is the source of the PTA GW signal? , 2023, 2308.08546.

[4]  M. Lewicki,et al.  Ultralow mass primordial black holes in the early Universe can explain the pulsar timing array signal , 2023, Physical Review D.

[5]  Sai Wang,et al.  Constraints on holographic QCD phase transitions from PTA observations , 2023, 2308.07257.

[6]  Zhu Yi,et al.  Model-independent reconstruction of the primordial curvature power spectrum from PTA data , 2023, Journal of Cosmology and Astroparticle Physics.

[7]  S. King,et al.  Quantum gravity effects on dark matter and gravitational waves , 2023, Physical Review D.

[8]  Lang Liu,et al.  Probing the equation of state of the early Universe with pulsar timing arrays , 2023, 2307.14911.

[9]  A. Riotto,et al.  How Well Do We Know the Primordial Black Hole Abundance? The Crucial Role of Non-Linearities when Approaching the Horizon , 2023, 2307.13633.

[10]  Qing-Hua Zhu,et al.  Exploring the Equation of State of the Early Universe: Insights from BBN, CMB, and PTA Observations , 2023, 2307.13574.

[11]  M. Gorji,et al.  Extra-tensor-induced origin for the PTA signal: No primordial black hole production , 2023, 2307.13109.

[12]  M. Sami,et al.  Gravitational Waves Background (NANOGrav) from Quintessential Inflation , 2023 .

[13]  P. Pani,et al.  Novel tests of gravity using nano-Hertz stochastic gravitational-wave background signals , 2023, Journal of Cosmology and Astroparticle Physics.

[14]  Zhaolong Yu,et al.  Nano-Hertz gravitational waves from collapsing domain walls associated with freeze-in dark matter in light of pulsar timing array observations , 2023, Physical Review D.

[15]  S. Matarrese,et al.  Adiabatic or Non-Adiabatic? Unraveling the Nature of Initial Conditions in the Cosmological Gravitational Wave Background , 2023, 2307.11043.

[16]  Lang Liu,et al.  Confronting sound speed resonance with pulsar timing arrays , 2023, 2307.08687.

[17]  Guillem Domènech,et al.  Scalar-induced gravitational wave interpretation of PTA data: the role of scalar fluctuation propagation speed , 2023, Journal of Cosmology and Astroparticle Physics.

[18]  M. Sami,et al.  PBHs and GWs from 𝕋2-inflation and NANOGrav 15-year data , 2023, Journal of Cosmology and Astroparticle Physics.

[19]  A. Silvestri,et al.  Can the Gravitational Wave Background Feel Wiggles in Spacetime? , 2023, The Astrophysical Journal Letters.

[20]  S. Antusch,et al.  Singling out SO(10) GUT models using recent PTA results , 2023, Physical Review D.

[21]  Zhu Yi,et al.  Constraints on primordial curvature power spectrum with pulsar timing arrays , 2023, 2307.04419.

[22]  M. Geller,et al.  Challenges in interpreting the NANOGrav 15-year dataset as early Universe gravitational waves produced by an ALP induced instability , 2023, Physical Review D.

[23]  Q. Huang,et al.  Cosmological interpretation for the stochastic signal in pulsar timing arrays , 2023, Science China Physics, Mechanics & Astronomy.

[24]  Xiu-Fei Li Probing the high temperature symmetry breaking with gravitational waves from domain walls , 2023, 2307.03163.

[25]  Qing-Hua Zhu,et al.  Joint implications of BBN, CMB, and PTA Datasets for Scalar-Induced Gravitational Waves of Second and Third orders , 2023, 2307.03095.

[26]  Y. Gong,et al.  The waveform of the scalar induced gravitational waves in light of Pulsar Timing Array data , 2023, 2307.02467.

[27]  M. Pieroni,et al.  Cosmological Background Interpretation of Pulsar Timing Array Data. , 2023, Physical review letters.

[28]  Y. Tada,et al.  Translating nano-Hertz gravitational wave background into primordial perturbations taking account of the cosmological QCD phase transition , 2023, Physical Review D.

[29]  Ke-Pan Xie,et al.  A collider test of nano-Hertz gravitational waves from pulsar timing arrays , 2023, 2307.01086.

[30]  L. Anchordoqui,et al.  Fuzzy Dark Matter, the Dark Dimension, and the Pulsar Timing Array Signal , 2023, 2307.01100.

[31]  S. King,et al.  Did we hear the sound of the Universe boiling? Analysis using the full fluid velocity profiles and NANOGrav 15-year data , 2023, 2307.02259.

[32]  Q. Huang,et al.  Implications for the Supermassive Black Hole Binaries from the NANOGrav 15-year Data Set , 2023, 2307.00722.

[33]  Lang Liu,et al.  Implications for the non-Gaussianity of curvature perturbation from pulsar timing arrays , 2023, Physical Review D.

[34]  M. H. Rahat,et al.  NANOGrav signal from axion inflation , 2023, 2307.01192.

[35]  Qing-Hua Zhu,et al.  Exploring the Implications of 2023 Pulsar Timing Array Datasets for Scalar-Induced Gravitational Waves and Primordial Black Holes , 2023, 2307.00572.

[36]  W. Yin,et al.  A novel probe of supersymmetry in light of nanohertz gravitational waves , 2023, Journal of High Energy Physics.

[37]  K. Kohri,et al.  Detected stochastic gravitational waves and subsolar-mass primordial black holes , 2023, Physical Review D.

[38]  Yi-Fu Cai,et al.  Limits on scalar-induced gravitational waves from the stochastic background by pulsar timing array observations , 2023, 2306.17822.

[39]  Jin Min Yang,et al.  Self-interacting dark matter implied by nano-Hertz gravitational waves , 2023, 2306.16966.

[40]  Fabrizio Rompineve,et al.  Footprints of the QCD Crossover on Cosmological Gravitational Waves at Pulsar Timing Arrays. , 2023, Physical review letters.

[41]  Y. Li,et al.  Primordial magnetic field as a common solution of nanohertz gravitational waves and the Hubble tension , 2023, Physical Review D.

[42]  S. Vagnozzi Inflationary interpretation of the stochastic gravitational wave background signal detected by pulsar timing array experiments , 2023, Journal of High Energy Astrophysics.

[43]  Yongcheng Wu,et al.  Footprints of Axion-Like Particle in Pulsar Timing Array Data and JWST Observations , 2023, 2306.17022.

[44]  G. Franciolini,et al.  The recent gravitational wave observation by pulsar timing arrays and primordial black holes: the importance of non-gaussianities , 2023, 2306.17149.

[45]  Yi-Fu Cai,et al.  Have pulsar timing array methods detected a cosmological phase transition? , 2023, Physical Review D.

[46]  F. Takahashi,et al.  Nanohertz Gravitational Waves from Axion Domain Walls Coupled to QCD , 2023, 2306.17146.

[47]  Yiyuan Wang,et al.  Dark Matter Spike surrounding Supermassive Black Holes Binary and the nanohertz Stochastic Gravitational Wave Background , 2023, 2306.17143.

[48]  Joseph P. Glaser,et al.  The NANOGrav 15 yr Data Set: Search for Signals from New Physics , 2023, The Astrophysical Journal Letters.

[49]  X. Wu,et al.  Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I , 2023, Research in Astronomy and Astrophysics.

[50]  Y. Levin,et al.  Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array , 2023, The Astrophysical Journal Letters.

[51]  Joseph P. Glaser,et al.  The NANOGrav 15 yr Data Set: Observations and Timing of 68 Millisecond Pulsars , 2023, The Astrophysical Journal Letters.

[52]  Joseph P. Glaser,et al.  The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background , 2023, The Astrophysical Journal Letters.

[53]  M. Lower,et al.  The Parkes Pulsar Timing Array Third Data Release , 2023, Publications of the Astronomical Society of Australia.

[54]  B. C. Joshi,et al.  The second data release from the European Pulsar Timing Array. III. Search for gravitational wave signals , 2023, Astronomy & Astrophysics.

[55]  J. Gair,et al.  The second data release from the European Pulsar Timing Array. I. The dataset and timing analysis , 2023, Astronomy & Astrophysics.

[56]  B. C. Joshi,et al.  The second data release from the European Pulsar Timing Array , 2023, Astronomy & Astrophysics.

[57]  P. Schwaller,et al.  Primordial gravitational waves in the nano-Hertz regime and PTA data -- towards solving the GW inverse problem , 2023, 2306.14856.

[58]  S. King,et al.  Towards distinguishing Dirac from Majorana neutrino mass with gravitational waves , 2023, 2306.05389.

[59]  Q. Huang,et al.  Pulsar timing residual induced by ultralight tensor dark matter , 2023, Journal of Cosmology and Astroparticle Physics.

[60]  D. Stinebring,et al.  Searching for continuous Gravitational Waves in the second data release of the International Pulsar Timing Array , 2023, 2303.10767.

[61]  Fabrizio Rompineve,et al.  Search for scalar induced gravitational waves in the international pulsar timing array data release 2 and NANOgrav 12.5 years datasets , 2023, SciPost Physics Core.

[62]  Q. Huang,et al.  Search for stochastic gravitational-wave background from massive gravity in the NANOGrav 12.5-year dataset , 2023, Physical Review D.

[63]  Huan Zhou,et al.  Towards a reliable reconstruction of the power spectrum of primordial curvature perturbation on small scales from GWTC-3 , 2022, Physics Letters B.

[64]  Lang Liu,et al.  Constraining the merger history of primordial-black-hole binaries from GWTC-3 , 2022, Physical Review D.

[65]  N. Bhat,et al.  Constraining ultralight vector dark matter with the Parkes Pulsar Timing Array second data release , 2022, Physical Review D.

[66]  Q. Huang,et al.  Constraints on primordial-black-hole population and cosmic expansion history from GWTC-3 , 2022, Journal of Cosmology and Astroparticle Physics.

[67]  Q. Huang,et al.  Search for the Gravitational-wave Background from Cosmic Strings with the Parkes Pulsar Timing Array Second Data Release , 2022, The Astrophysical Journal.

[68]  A. Ashoorioon,et al.  NANOGrav signal from the end of inflation and the LIGO mass and heavier primordial black holes , 2022, Physics Letters B.

[69]  J. García-Bellido,et al.  Tracking the origin of black holes with the stochastic gravitational wave background popcorn signal , 2022, Monthly Notices of the Royal Astronomical Society.

[70]  R. Cai,et al.  Testing primordial black hole and measuring the Hubble constant with multiband gravitational-wave observations , 2021, Journal of Cosmology and Astroparticle Physics.

[71]  S. Vagnozzi,et al.  Primordial gravitational waves from NANOGrav: A broken power-law approach , 2021, Physical Review D.

[72]  J. García-Bellido,et al.  Testing Primordial Black Holes with multi-band observations of the stochastic gravitational wave background , 2021, Journal of Cosmology and Astroparticle Physics.

[73]  G. Desvignes,et al.  The International Pulsar Timing Array: second data release , 2019, Monthly Notices of the Royal Astronomical Society.

[74]  Q. Huang,et al.  Confronting the primordial black hole scenario with the gravitational-wave events detected by LIGO-Virgo , 2021, Physics Letters B.

[75]  Q. Huang,et al.  Constraining the Polarization of Gravitational Waves with the Parkes Pulsar Timing Array Second Data Release , 2021, The Astrophysical Journal.

[76]  Jinsu Kim,et al.  Primordial black holes from Gauss-Bonnet-corrected single field inflation , 2021, Physical Review D.

[77]  Q. Huang,et al.  Non-tensorial gravitational wave background in NANOGrav 12.5-year data set , 2021, Science China Physics, Mechanics & Astronomy.

[78]  Perturbations , 2020, The Cosmic Microwave Background.

[79]  M. Raidal,et al.  Two populations of LIGO-Virgo black holes , 2020, Journal of Cosmology and Astroparticle Physics.

[80]  Guillem Domènech,et al.  NANOGrav hints on planet-mass primordial black holes , 2020, Science China Physics, Mechanics & Astronomy.

[81]  S. Vagnozzi Implications of the NANOGrav results for inflation , 2020, Monthly Notices of the Royal Astronomical Society: Letters.

[82]  H. Veermäe,et al.  Did NANOGrav See a Signal from Primordial Black Hole Formation? , 2020, Physical review letters.

[83]  P. Pani,et al.  GW190521 Mass Gap Event and the Primordial Black Hole Scenario. , 2021, Physical review letters.

[84]  T. Banks,et al.  Primordial Black Holes as Dark Matter , 2020, 2008.00327.

[85]  Hongwei Yu,et al.  Primordial black holes and oscillating gravitational waves in slow-roll and slow-climb inflation with an intermediate noninflationary phase , 2020, Physical Review D.

[86]  A. Arbey,et al.  Detecting Planet 9 via Hawking radiation , 2020, 2006.02944.

[87]  B. Carr,et al.  Primordial Black Holes as Dark Matter: Recent Developments , 2020, Annual Review of Nuclear and Particle Science.

[88]  A. Loeb,et al.  Searching for Black Holes in the Outer Solar System with LSST , 2020, The Astrophysical Journal.

[89]  E. Witten Searching for a Black Hole in the Outer Solar System , 2020, 2004.14192.

[90]  J. Yokoyama,et al.  Constraints on primordial black holes , 2020, Reports on progress in physics. Physical Society.

[91]  M. Takada,et al.  Exploring Primordial Black Holes from the Multiverse with Optical Telescopes. , 2020, Physical review letters.

[92]  R. Cai,et al.  Merger rate distribution of primordial black hole binaries with electric charges , 2020, 2001.02984.

[93]  R. Cai,et al.  Primordial black holes and gravitational waves from parametric amplification of curvature perturbations , 2019, Journal of Cosmology and Astroparticle Physics.

[94]  James Unwin,et al.  What If Planet 9 Is a Primordial Black Hole? , 2019, Physical review letters.

[95]  J. García-Bellido,et al.  Unveiling the gravitational universe at μ-Hz frequencies , 2019, Experimental Astronomy.

[96]  R. Cai,et al.  Primordial black holes from cosmic domain walls , 2019, Physical Review D.

[97]  Jun Li,et al.  Measuring the tilt of primordial gravitational-wave power spectrum from observations , 2019, Science China Physics, Mechanics & Astronomy.

[98]  Hongwei Yu,et al.  Primordial black holes from inflation with nonminimal derivative coupling , 2019, Physical Review D.

[99]  Lucy Rosenbloom arXiv , 2019, The Charleston Advisor.

[100]  Q. Huang,et al.  Distinguishing primordial black holes from astrophysical black holes by Einstein Telescope and Cosmic Explorer , 2019, Journal of Cosmology and Astroparticle Physics.

[101]  R. Cai,et al.  Effects of the merger history on the merger rate density of primordial black hole binaries , 2019, The European Physical Journal C.

[102]  M. Takada,et al.  Constraints on Earth-mass primordial black holes from OGLE 5-year microlensing events , 2019, Physical Review D.

[103]  R. Cai,et al.  Effects of the surrounding primordial black holes on the merger rate of primordial black hole binaries , 2018, Physical Review D.

[104]  R. Cai,et al.  Gravitational Waves Induced by Non-Gaussian Scalar Perturbations. , 2018, Physical review letters.

[105]  F. Huang,et al.  Stochastic Gravitational-wave Background from Binary Black Holes and Binary Neutron Stars and Implications for LISA , 2018, The Astrophysical Journal.

[106]  J. Aumont,et al.  Planck2018 results , 2018, Astronomy & Astrophysics.

[107]  K. Kohri,et al.  Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations , 2018, Physical Review D.

[108]  J. Espinosa,et al.  A cosmological signature of the SM Higgs instability: gravitational waves , 2018, Journal of Cosmology and Astroparticle Physics.

[109]  Q. Huang,et al.  Merger Rate Distribution of Primordial Black Hole Binaries , 2018, The Astrophysical Journal.

[110]  Takahiro Tanaka,et al.  Primordial black holes—perspectives in gravitational wave astronomy , 2018, 1801.05235.

[111]  T. Yanagida,et al.  Double inflation as a single origin of primordial black holes for all dark matter and LIGO observations , 2017, 1711.06129.

[112]  B. A. Boom,et al.  GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence , 2017, 1711.05578.

[113]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[114]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[115]  R. Poleski,et al.  No large population of unbound or wide-orbit Jupiter-mass planets , 2017, Nature.

[116]  Bertrand Mennesson,et al.  Theia: Faint objects in motion or the new astrometry frontier , 2017, 1707.01348.

[117]  C. Germani,et al.  On primordial black holes from an inflection point , 2017, 1706.04226.

[118]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[119]  M. Raidal,et al.  Primordial black hole constraints for extended mass functions , 2017, 1705.05567.

[120]  J. García-Bellido,et al.  Primordial black holes from single field models of inflation , 2017, 1702.03901.

[121]  R. Lupton,et al.  Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations , 2017, Nature Astronomy.

[122]  The Ligo Scientific Collaboration,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016, 1606.04855.

[123]  M. Kawasaki,et al.  Revisiting constraints on small scale perturbations from big-bang nucleosynthesis , 2016, 1605.04646.

[124]  D. Reitze The Observation of Gravitational Waves from a Binary Black Hole Merger , 2016 .

[125]  Takahiro Tanaka,et al.  Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. , 2016, Physical review letters.

[126]  A. Riess,et al.  Did LIGO Detect Dark Matter? , 2016, Physical review letters.

[127]  L. Shao,et al.  Gravitational wave astronomy with the SKA , 2014, 1501.00127.

[128]  A. Dmitriev,et al.  Signatures of primordial black hole dark matter , 2014, 1410.0203.

[129]  M. Kamionkowski,et al.  Silk damping at a redshift of a billion: new limit on small-scale adiabatic perturbations. , 2014, Physical review letters.

[130]  K. Griest,et al.  New limits on primordial black hole dark matter from an analysis of Kepler source microlensing data. , 2013, Physical review letters.

[131]  Jillian Bellovary,et al.  Black holes in the early Universe , 2012, Reports on progress in physics. Physical Society.

[132]  M. Shaposhnikov,et al.  The Standard Model Higgs boson as the inflaton , 2007, 0710.3755.

[133]  P. Steinhardt,et al.  Gravitational Wave Spectrum Induced by Primordial Scalar Perturbations , 2007, hep-th/0703290.

[134]  J. Beaulieu,et al.  Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds , 2006, astro-ph/0607207.

[135]  E. Komatsu,et al.  Improved Calculation of the Primordial Gravitational Wave Spectrum in the Standard Model , 2006, astro-ph/0604176.

[136]  R. Durrer Cosmological perturbation theory , 2004, astro-ph/0402129.

[137]  S. Weinberg Damping of tensor modes in cosmology , 2003, astro-ph/0306304.

[138]  E. L. Wright,et al.  The Cosmic Microwave Background Spectrum from the Full COBE FIRAS Data Set , 1996, astro-ph/9605054.

[139]  R. Hellings,et al.  Upper limits on the isotropic gravitational radiation background from pulsar timing analysis , 1983 .

[140]  Stephen W. Hawking,et al.  Gravitationally collapsed objects of very low mass , 1971 .

[141]  K. Jedamzik Primordial Black Holes as Dark Matter , 2001 .

[142]  Y. Zel’dovich,et al.  The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model , 1966 .