Bayesian analysis of extreme events with threshold estimation

The aim of this paper is to analyse extremal events using generalized Pareto distributions (GPD), considering explicitly the uncertainty about the threshold. Current practice empirically determines this quantity and proceeds by estimating the GPD parameters on the basis of data beyond it, discarding all the information available below the threshold. We introduce a mixture model that combines a parametric form for the center and a GPD for the tail of the distributions and uses all observations for inference about the unknown parameters from both distributions, the threshold included. Prior distributions for the parameters are indirectly obtained through experts quantiles elicitation. Posterior inference is available through Markov chain Monte Carlo methods. Simulations are carried out in order to analyse the performance of our proposed model under a wide range of scenarios. Those scenarios approximate realistic situations found in the literature. We also apply the proposed model to a real dataset, Nasdaq 100, an index of the financial market that presents many extreme events. Important issues such as predictive analysis and model selection are considered along with possible modeling extensions.

[1]  A. O'Hagan,et al.  Accounting for threshold uncertainty in extreme value estimation , 2006 .

[2]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[3]  Hedibert Freitas Lopes,et al.  Data driven estimates for mixtures , 2004, Comput. Stat. Data Anal..

[4]  Luis R. Pericchi,et al.  Anticipating catastrophes through extreme value modelling , 2003 .

[5]  Brian J. Smith,et al.  BAYESIAN OUTPUT ANALYSIS PROGRAM (BOA) VERSION 1.1 USER'S MANUAL , 2003 .

[6]  A. Frigessi,et al.  A Dynamic Mixture Model for Unsupervised Tail Estimation without Threshold Selection , 2002 .

[7]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .

[8]  Richard L. Smith Risk Management: Measuring Risk with Extreme Value Theory , 2002 .

[9]  K. F. Turkman,et al.  A Predictive Approach to Tail Probability Estimation , 2001 .

[10]  Paul Embrechts,et al.  Extremes and Integrated Risk Management , 2000 .

[11]  Tail Estimation With The Generalised Pareto Distribution Without Threshold Selection , 2000 .

[12]  S. Resnick,et al.  Extreme Value Theory as a Risk Management Tool , 1999 .

[13]  Dani Gamerman,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 1997 .

[14]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[15]  Jonathan A. Tawn,et al.  A Bayesian Analysis of Extreme Rainfall Data , 1996 .

[16]  Jan Beirlant,et al.  Excess functions and estimation of the extreme-value index , 1996 .

[17]  Jonathan A. Tawn,et al.  Modelling extremes of the areal rainfall process. , 1996 .

[18]  Stuart G. Coles,et al.  Bayesian methods in extreme value modelling: a review and new developments. , 1996 .

[19]  S. Coles,et al.  Statistical Methods for Multivariate Extremes: An Application to Structural Design , 1994 .

[20]  PAUL EMBRECHTS,et al.  Modelling of extremal events in insurance and finance , 1994, Math. Methods Oper. Res..

[21]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[22]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[23]  S. Coles,et al.  Modelling Extreme Multivariate Events , 1991 .

[24]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[25]  Richard L. Smith,et al.  Models for exceedances over high thresholds , 1990 .

[26]  Richard L. Smith Estimating tails of probability distributions , 1987 .

[27]  W. DuMouchel Estimating the Stable Index $\alpha$ in Order to Measure Tail Thickness: A Critique , 1983 .

[28]  Philip Heidelberger,et al.  Simulation Run Length Control in the Presence of an Initial Transient , 1983, Oper. Res..

[29]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .