X-ray emission from classical and recurrent-novae observed with ROSAT

We have analysed 350 pointed and serendipitous observations of 108 different classical and recurrent novae in outburst and in quiescence, contained in the ROSAT archive. One aim was to search for super-soft X-ray sources and we found only 3 of them among post-novae. Thus, the super-soft X-ray phase of novae is relatively short lived (up to 10 years) and is observed only for up to 20% of novae. Most classical and recurrent novae instead emit hard X-rays (in the ROSAT band) in the first months after the outburst, with peak X-ray luminosity of a few times 10(33) erg/s. The emission, which we attribute to shocks in the nova ejecta, lasts at least 2 years and even much longer under special circumstances (like preexisting circumstellar material, or a prolonged wind phase). We also investigate X-ray emission due to accretion in quiescent novae. Only 11 out of 81 Galactic classical and recurrent novae were detected. The average X-ray uminosity is not higher than for dwarf novae, and some novae are variable in X-rays on time scales of years.

[1]  H. Ögelman,et al.  The First Resolved and Detected Classical Nova Shell in X-Rays: The Shell of Nova Persei 1901 , 1999 .

[2]  T. O’brien,et al.  Shock-heated gas in the outbursts of classical novae , 1994 .

[3]  H. Richman,et al.  X-Ray Spectra of Cataclysmic Variables from ROSAT , 1995 .

[4]  S. Starrfield,et al.  Of Galactic Novae , 1987 .

[5]  M. Fujimoto A theory of hydrogen shell flashes on accreting white dwarfs. I - Their progress and the expansion of the envelope. II - The stable shell burning and the recurrence period of shell flashes , 1982 .

[6]  Sumner Starrfield,et al.  ROSAT X-ray observations of nova V1974 Cygni: The rise and fall of the brightest supersoft X-ray source , 1996 .

[7]  H. Ögelman,et al.  Detection of supersoft X-ray emission from GQ Muscae nine years after a nova outburst , 1993, Nature.

[8]  R. Benjamin,et al.  Near-infrared spectroscopy of classical novae in the coronal phase , 1990 .

[9]  M. F. Bode,et al.  AN INTERACTING WINDS MODEL FOR THE X-RAY-EMISSION FROM V838 HER (NOVA-HERCULIS 1991) , 1994 .

[10]  T. Harrison,et al.  A survey of IRAS data on 41 classical novae , 1988 .

[11]  D. Prialnik The Evolution of a Classical Nova Model through a Complete Cycle , 1986 .

[12]  Michael F. Skrutskie,et al.  The infrared coronal lines of recent novae , 1990 .

[13]  Robert E. Williams Extinction, ejecta masses, and radial velocities of novae , 1994 .

[14]  J. Patterson,et al.  X-ray emission from cataclysmic variables with accretion disks. I - Hard X-rays. II - EUV/soft X-ray radiation , 1985 .

[15]  H. Ögelman,et al.  ROSAT Observation of the Old Classical Nova CP Puppis , 1995 .

[16]  J. Patterson,et al.  The evolution of cataclysmic and low-mass X-ray binaries. , 1984 .

[17]  B. Pagel,et al.  Stellar atmospheres , 1978, Nature.

[18]  James MacDonald,et al.  Thermal X-ray emission from classical novae in optical decline , 1991 .

[19]  ROBERT E. Williams,et al.  The Formation of Novae Spectra , 1992 .

[20]  Joseph Patterson,et al.  THE DQ HERCULIS STARS , 1994 .

[21]  Mariko Kato,et al.  Optically Thick Winds from Degenerate Dwarfs. I. Classical Novae of Populations I and II , 1997 .

[22]  H. Ögelman,et al.  The soft X-ray turnoff of Nova Muscae 1983 , 1995 .

[23]  Joachim Krautter,et al.  The nebular phase of Nova GQ Muscae 1983 - Evolution of the ionization of the optical spectrum , 1989 .

[24]  C. D. Laney,et al.  The recurrent nova V394 Coronae Austrinae - The 1987 outburst , 1989 .

[25]  P. Kahabka,et al.  Luminous Supersoft X-Ray Sources , 1997 .

[26]  M. Orio X-ray observations of classical and recurrent novae , 1999 .

[27]  Joachim Krautter,et al.  The X-Ray Spectral Evolution of Classical Nova V1974 Cygni 1992: A Reanalysis of the ROSAT Data , 1998 .

[28]  R. Becker,et al.  An X-ray survey of nine historical novae. [HEAO 2 observations , 1980 .

[29]  H. Ögelman,et al.  An Update on the X-Ray Observations of Classical Novae , 1995 .

[30]  Blair D. Savage,et al.  An IUE survey of interstellar H I Ly alpha absorption. 2: Interpretations , 1994 .

[31]  D. Cohen,et al.  The X-Ray Halo of Nova V1974 Cygni (Nova Cygni 1992) and the Nature of Interstellar Dust , 1995 .

[32]  H. Duerbeck The final decline of novae and the hibernation hypothesis , 1992 .

[33]  Marina Orio,et al.  X-Ray Emission of Nova Puppis 1991: Accretion or a Shocked Shell? , 1996 .

[34]  J. Truran,et al.  A Multiwavelength Study of Nova QU Vulpeculae 1984 , 1992 .

[35]  P. Morrison,et al.  On transient thermal X-ray emission from novae , 1977 .

[36]  Manabu Ishida,et al.  The Early X-Ray Emission from V382 Velorum (Nova Velorum 1999): An Internal Shock Model , 2001 .

[37]  B. Warner,et al.  Superhumps in Cataclysmic Binaries. XIII. CP Puppis , 1998 .

[38]  M. Bode,et al.  The hydrodynamics of bipolar explosions , 1994 .

[39]  M. Bode,et al.  Shaping of nova remnants by binary motion , 1997 .

[40]  Mario Livio,et al.  The Calibration of Novae as Distance Indicators , 1995 .

[41]  M. Contini,et al.  RS OPH at day 201: a test case for shocks in nova shells , 1995 .

[42]  J. Patterson,et al.  ROSAT observations of cataclysmic variables: A search for the boundary layer emission , 1994 .

[43]  M. F. Bode,et al.  X-ray detection of Nova Herculis 1991 five days after optical outburst , 1992, Nature.

[44]  M. Livio,et al.  First Direct Measurement of Acceleration in the Outflow of a Nova: U Scorpii (1999) , 1999 .