Evolution of Li, Be, and B in the Galaxy

In this paper we study the production of Li, Be, and B nuclei by Galactic cosmic-ray spallation processes. We include three kinds of processes: (1) spallation by light cosmic rays impinging on interstellar CNO nuclei (direct processes), (2) spallation by CNO cosmic-ray nuclei impinging on interstellar p and 4He (inverse processes), and (3) α-α fusion reactions. The latter dominate the production of 6,7Li. We calculate production rates for a closed box Galactic model, verifying the quadratic dependence of the Be and B abundances for low values of Z. These are quite general results and are known to disagree with observations. We then show that the multizone, multipopulation model that we used previously for other aspects of Galactic evolution produces quite good agreement with the linear trend observed at low metallicities without fine-tuning. We argue that reported discrepancies between theory and observations do not represent a nucleosynthetic problem but instead are the consequences of inaccurate treatments of Galactic evolution.

[1]  Gang Zhao,et al.  Lithium abundances for 185 main-sequence stars - galactic evolution and stellar depletion of lithium , 2001 .

[2]  F. Ferrini,et al.  Galactic Chemical Evolution of Lithium: Interplay between Stellar Sources , 2001, astro-ph/0105558.

[3]  D. Roberts,et al.  Production ofA=6,7nuclides in theα+αreaction and cosmic ray nucleosynthesis , 2001, nucl-ex/0104005.

[4]  M. Bautista,et al.  The Importance of Fe I as a Continuous Opacity Source in the Solar Atmosphere , 2001 .

[5]  J. Fulbright Abundances and Kinematics of Field Halo and Disk Stars. I. Observational Data and Abundance Analysis , 2000, astro-ph/0006260.

[6]  B. Savage,et al.  The Abundance of Interstellar Boron , 2000, astro-ph/0005520.

[7]  K. Cunha,et al.  A Uniform Analysis of Boron in F and G Disk Dwarfs from Hubble Space Telescope Archival Spectra , 2000 .

[8]  B. Fields,et al.  Testing Spallation Processes with Beryllium and Boron , 1999, astro-ph/9911320.

[9]  M. Cassé,et al.  Lithium–beryllium–boron: origin and evolution , 1999, astro-ph/9907171.

[10]  T. Beers,et al.  Primordial Lithium and Big Bang Nucleosynthesis , 1999, The Astrophysical journal.

[11]  F. Ferrini,et al.  Galactic Chemical Evolution of Heavy Elements: From Barium to Europium , 1999, astro-ph/9903451.

[12]  T. Beers,et al.  The Spite Lithium Plateau: Ultrathin but Postprimordial , 1999, astro-ph/9903059.

[13]  T. Beers,et al.  Beryllium Abundances in Halo Stars from Keck/HIRES Observations , 1999 .

[14]  F. Robert,et al.  Distribution of lithium, beryllium, and boron in meteoritic chondrules , 1999 .

[15]  K. Olive,et al.  LiBeB, Cosmic Rays, and Gamma‐Ray Line Astronomy , 1999, astro-ph/9901073.

[16]  B. Fields,et al.  The evolution of 6Li in standard cosmic-ray nucleosynthesis , 1998, astro-ph/9811183.

[17]  W. Webber,et al.  A New Estimate of the Local Interstellar Energy Density and Ionization Rate of Galactic Cosmic Cosmic Rays , 1998 .

[18]  B. Fields,et al.  The Revival of Galactic Cosmic-Ray Nucleosynthesis? , 1998, astro-ph/9809277.

[19]  M. Cassé,et al.  Galactic Cosmic Rays and the Evolution of Light Elements , 1998 .

[20]  M. Pinsonneault,et al.  Boron Abundances and Internal Mixing in Stars. I. The Hyades Giants , 1998 .

[21]  N. Grevesse,et al.  Standard Solar Composition , 1998 .

[22]  B. Edvardsson,et al.  Boron in Very Metal-poor Stars , 1998, astro-ph/9801167.

[23]  R. Steiger,et al.  Primordial Nuclei and Their Galactic Evolution , 1998 .

[24]  F. Primas,et al.  The Evolution of Galactic Boron and the Production Site of the Light Elements , 1997 .

[25]  P. Bonifacio,et al.  The primordial lithium abundance , 1996, astro-ph/9611043.

[26]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[27]  F. Ferrini,et al.  Evolution of Spiral Galaxies. IV. The Thick Disk in the Solar Region as an Intermediate Collapse Phase , 1995 .

[28]  F. Ferrini,et al.  Galactic evolution of D and He-3 , 1995 .

[29]  S. Balachandran Stellar and Interstellar Lithium and Primordial Nucleosynthesis (JD 11, 22nd General Assembly of the IAU) , 1995 .

[30]  F. Ferrini,et al.  Evolution of spiral galaxies. III. Application of the multiphase model to the galactic disk , 1994 .

[31]  N. Prantzos,et al.  Production and evolution of LiBeB isotopes in the galaxy , 1993 .

[32]  F. Ferrini,et al.  Evolution of spiral galaxies. I - Halo-disk connection for the evolution of the solar neighborhood , 1992 .

[33]  Francesca Matteucci,et al.  Chemical and dynamical evolution of galaxies , 1990 .

[34]  S. Balachandran Lithium depletion and rotation in main-sequence stars , 1990 .

[35]  S. Read,et al.  Excitation functions for A ⩾ 6 fragments formed in 1H- and 4He-induced reactions on light nuclei , 1984 .

[36]  C. Cesarsky Cosmic-Ray Confinement in the Galaxy , 1980 .

[37]  J. Meyer,et al.  Cosmic-ray nucleosynthesis and the infall rate of extragalactic matter in the solar neighborhood , 1978 .

[38]  A. Wolfendale,et al.  The interstellar spectrum of cosmic rays. , 1976 .

[39]  W. Arnett,et al.  Evolution Of Galaxies .2. Chemical Evolution Coefficients , 1973 .

[40]  W. Arnett,et al.  The Evolution of Galaxies. II. Chemical Evolution Coefficients , 1973 .

[41]  H. Mitler Cosmic-ray production of deuterium, He3, lithium, beryllium, and boron in the Galaxy , 1972 .

[42]  G. Gloeckler,et al.  Solar modulation and the energy density of galactic cosmic rays. , 1967 .