Computing the Smoothness Exponent of a Symmetric Multivariate Refinable Function
暂无分享,去创建一个
[1] Qingtang Jiang,et al. Spectral Analysis of the Transition Operator and Its Applications to Smoothness Analysis of Wavelets , 2002, SIAM J. Matrix Anal. Appl..
[2] Josip Derado. Nonseparable, Compactly Supported Interpolating Refinable Functions with Arbitrary Smoothness☆ , 2001 .
[3] A. Ron,et al. The Sobolev Regularity of Refinable Functions , 2000 .
[4] Rong-Qing Jia,et al. Interpolatory Subdivision Schemes Induced by Box Splines , 2000 .
[5] Bin Han,et al. Analysis and Construction of Optimal Multivariate Biorthogonal Wavelets with Compact Support , 1999, SIAM J. Math. Anal..
[6] Rong-Qing Jia,et al. Smoothness of Multiple Refinable Functions and Multiple Wavelets , 1999, SIAM J. Matrix Anal. Appl..
[7] A. Cohen,et al. Regularity of Multivariate Refinable Functions , 1999 .
[8] R. Jia. Characterization of Smoothness of Multivariate Refinable Functions in Sobolev Spaces , 1999 .
[9] Rong-Qing Jia,et al. Spectral properties of the transition operator associated to a multivariate refinement equation , 1999 .
[10] Qingtang Jiang. Multivariate matrix refinable functions with arbitrary matrix dilation , 1999 .
[11] R. Jia,et al. Optimal Interpolatory Subdivision Schemes in Multidimensional Spaces , 1998 .
[12] R. Jia,et al. Multivariate refinement equations and convergence of subdivision schemes , 1998 .
[13] Qingtang Jiang. On the regularity of matrix refinable functions , 1998 .
[14] Rong-Qing Jia,et al. Approximation properties of multivariate wavelets , 1998, Math. Comput..
[15] Zuowei Shen,et al. Multidimensional Interpolatory Subdivision Schemes , 1997 .
[16] S. L. Lee,et al. Stability and orthonormality of multivariate refinable functions , 1997 .
[17] I. Daubechies,et al. A new technique to estimate the regularity of refinable functions , 1996 .
[18] Charles A. Micchelli,et al. Interpolatory Subdivision Schemes and Wavelets , 1996 .
[19] L. Hervé. Comportement asymptotique dans l'algorithme de transformée en ondelettes: Lien avec la régularité de l'ondelette , 1995 .
[20] L. Villemoes. Wavelet analysis of refinement equations , 1994 .
[21] I. Daubechies,et al. Non-separable bidimensional wavelets bases. , 1993 .
[22] I. Daubechies,et al. Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .
[23] T. Eirola. Sobolev characterization of solutions of dilation equations , 1992 .
[24] C. Micchelli,et al. Stationary Subdivision , 1991 .
[25] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.
[26] Gilles Deslauriers,et al. Symmetric iterative interpolation processes , 1989 .
[27] Bin Han,et al. Multivariate Refinable Hermite Interpolants , 2003 .
[28] Bin Han,et al. Quincunx fundamental refinable functions and quincunx biorthogonal wavelets , 2002, Math. Comput..
[29] Kim-Chuan Toh,et al. Computing the Sobolev Regularity of Refinable Functions by the Arnoldi Method , 2001, SIAM J. Matrix Anal. Appl..
[30] Bin Han,et al. Symmetry Property and Construction of Wavelets With a General Dilation Matrix , 2001 .
[31] Qingtang Jiang,et al. On the Analysis of 3-Subdivision Schemes , 2001 .
[32] T. A. Hogan,et al. Dependence Relations Among the Shifts of a Multivariate Refinable Distribution , 2000 .
[33] Shurong Zhang. Properties of refinable functions and subdivision schemes , 1998 .
[34] Thierry BLUzAbstract. SIMPLE REGULARITY CRITERIA FOR SUBDIVISION SCHEMES , 1997 .