Computing the Smoothness Exponent of a Symmetric Multivariate Refinable Function

Smoothness and symmetry are two important properties of a refinable function. It is known that the Sobolev smoothness exponent of a refinable function can be estimated by computing the spectral radius of a certain finite matrix which is generated from a mask. However, the increase of dimension and the support of a mask tremendously increase the size of the matrix and therefore make the computation very expensive. In this paper, we shall present a simple and efficient algorithm for the numerical computation of the smoothness exponent of a symmetric refinable function with a general dilation matrix. By taking into account the symmetry of a refinable function, our algorithm greatly reduces the size of the matrix and enables us to numerically compute the Sobolev smoothness exponents of a large class of symmetric refinable functions. Step-by-step numerically stable algorithms are given. To illustrate our results by performing some numerical experiments, we construct a family of dyadic interpolatory masks in any dimension, and we compute the smoothness exponents of their refinable functions in dimension three. Several examples will also be presented for computing smoothness exponents of symmetric refinable functions on the quincunx lattice and on the hexagonal lattice.

[1]  Qingtang Jiang,et al.  Spectral Analysis of the Transition Operator and Its Applications to Smoothness Analysis of Wavelets , 2002, SIAM J. Matrix Anal. Appl..

[2]  Josip Derado Nonseparable, Compactly Supported Interpolating Refinable Functions with Arbitrary Smoothness☆ , 2001 .

[3]  A. Ron,et al.  The Sobolev Regularity of Refinable Functions , 2000 .

[4]  Rong-Qing Jia,et al.  Interpolatory Subdivision Schemes Induced by Box Splines , 2000 .

[5]  Bin Han,et al.  Analysis and Construction of Optimal Multivariate Biorthogonal Wavelets with Compact Support , 1999, SIAM J. Math. Anal..

[6]  Rong-Qing Jia,et al.  Smoothness of Multiple Refinable Functions and Multiple Wavelets , 1999, SIAM J. Matrix Anal. Appl..

[7]  A. Cohen,et al.  Regularity of Multivariate Refinable Functions , 1999 .

[8]  R. Jia Characterization of Smoothness of Multivariate Refinable Functions in Sobolev Spaces , 1999 .

[9]  Rong-Qing Jia,et al.  Spectral properties of the transition operator associated to a multivariate refinement equation , 1999 .

[10]  Qingtang Jiang Multivariate matrix refinable functions with arbitrary matrix dilation , 1999 .

[11]  R. Jia,et al.  Optimal Interpolatory Subdivision Schemes in Multidimensional Spaces , 1998 .

[12]  R. Jia,et al.  Multivariate refinement equations and convergence of subdivision schemes , 1998 .

[13]  Qingtang Jiang On the regularity of matrix refinable functions , 1998 .

[14]  Rong-Qing Jia,et al.  Approximation properties of multivariate wavelets , 1998, Math. Comput..

[15]  Zuowei Shen,et al.  Multidimensional Interpolatory Subdivision Schemes , 1997 .

[16]  S. L. Lee,et al.  Stability and orthonormality of multivariate refinable functions , 1997 .

[17]  I. Daubechies,et al.  A new technique to estimate the regularity of refinable functions , 1996 .

[18]  Charles A. Micchelli,et al.  Interpolatory Subdivision Schemes and Wavelets , 1996 .

[19]  L. Hervé Comportement asymptotique dans l'algorithme de transformée en ondelettes: Lien avec la régularité de l'ondelette , 1995 .

[20]  L. Villemoes Wavelet analysis of refinement equations , 1994 .

[21]  I. Daubechies,et al.  Non-separable bidimensional wavelets bases. , 1993 .

[22]  I. Daubechies,et al.  Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .

[23]  T. Eirola Sobolev characterization of solutions of dilation equations , 1992 .

[24]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[25]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[26]  Gilles Deslauriers,et al.  Symmetric iterative interpolation processes , 1989 .

[27]  Bin Han,et al.  Multivariate Refinable Hermite Interpolants , 2003 .

[28]  Bin Han,et al.  Quincunx fundamental refinable functions and quincunx biorthogonal wavelets , 2002, Math. Comput..

[29]  Kim-Chuan Toh,et al.  Computing the Sobolev Regularity of Refinable Functions by the Arnoldi Method , 2001, SIAM J. Matrix Anal. Appl..

[30]  Bin Han,et al.  Symmetry Property and Construction of Wavelets With a General Dilation Matrix , 2001 .

[31]  Qingtang Jiang,et al.  On the Analysis of 3-Subdivision Schemes , 2001 .

[32]  T. A. Hogan,et al.  Dependence Relations Among the Shifts of a Multivariate Refinable Distribution , 2000 .

[33]  Shurong Zhang Properties of refinable functions and subdivision schemes , 1998 .

[34]  Thierry BLUzAbstract SIMPLE REGULARITY CRITERIA FOR SUBDIVISION SCHEMES , 1997 .