Lawvere–Tierney sheaves in Algebraic Set Theory

We present a solution to the problem of defining a counter- part in Algebraic Set Theory of the construction of internal sheaves in Topos Theory. Our approach is general in that we consider sheaves as determined by Lawvere-Tierney coverages, rather than by Grothendieck coverages, and assume only a weakening of the axioms for small maps originally introduced by Joyal and Moerdijk, thus subsuming the exist- ing topos-theoretic results.

[1]  M. Makkai,et al.  First order categorical logic , 1977 .

[2]  Michael Rathjen,et al.  Realizability for Constructive Zermelo-Fraenkel Set Theory , 2007 .

[3]  Michael P. Fourman,et al.  Sheaf models for set theory , 1980 .

[4]  A. Carboni,et al.  Regular and exact completions , 1998 .

[5]  Ieke Moerdijk,et al.  Algebraic set theory , 1995 .

[6]  Robert S. Lubarsky Independence results around constructive ZF , 2005, Ann. Pure Appl. Log..

[7]  Robin J. Grayson,et al.  Forcing in intuitionistic systems without power-set , 1983, Journal of Symbolic Logic.

[8]  Nicola Gambino,et al.  Presheaf models for Constructive Set Theories , 2005, From sets and types to topology and analysis.

[9]  Ieke Moerdijk,et al.  Aspects of predicative algebraic set theory, II: Realizability , 2008, Theor. Comput. Sci..

[10]  A. Carboni,et al.  Some free constructions in realizability and proof theory , 1995 .

[11]  Steve Awodey,et al.  PREDICATIVE ALGEBRAIC SET THEORY , 2004 .

[12]  Michael A. Warren Coalgebras in a category of classes , 2007, Ann. Pure Appl. Log..

[13]  Nicola Gambino The associated sheaf functor theorem in algebraic set theory , 2008, Ann. Pure Appl. Log..

[14]  B. Russell THE AXIOM OF CHOICE , 2003 .

[15]  Thomas Streicher,et al.  Relating Topos Theory and Set Theory Via Categories of Classes , 2003 .

[16]  D. McCarty Realizability and recursive mathematics , 1985 .

[17]  P. Johnstone Sketches of an Elephant: A Topos Theory Compendium Volume 1 , 2002 .

[18]  P. Aczel,et al.  Notes on constructive set theory , 1997 .

[19]  Nicola Gambino,et al.  Heyting-valued interpretations for Constructive Set Theory , 2006, Ann. Pure Appl. Log..

[20]  Peter Aczel,et al.  The generalised type-theoretic interpretation of constructive set theory , 2006, Journal of Symbolic Logic.

[21]  Alex K. Simpson Elementary axioms for categories of classes , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[22]  Ieke Moerdijk,et al.  Aspects of Predicative Algebraic Set Theory I: Exact Completion , 2007, 0710.3077.

[23]  Erik Palmgren,et al.  Type theories, toposes and constructive set theory: predicative aspects of AST , 2002, Ann. Pure Appl. Log..

[24]  Ieke Moerdijk,et al.  A unified approach to algebraic set theory , 2007, 0710.3066.

[25]  I. Moerdijk,et al.  Sheaves in geometry and logic: a first introduction to topos theory , 1992 .