Adaptive CAD model (re-)construction with THB-splines
暂无分享,去创建一个
Bert Jüttler | Gábor Kiss | Carlotta Giannelli | Urska Zore | David Großmann | Johannes Barner | B. Jüttler | Carlotta Giannelli | J. Barner | Gábor Kiss | D. Großmann | U. Zore
[1] Jiansong Deng,et al. Dimensions of spline spaces over T-meshes , 2006 .
[2] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[3] Harald Schoenenborn,et al. Determination of Blade-Alone Frequencies of a Blisk for Mistuning Analysis Based on Optical Measurements , 2009 .
[4] John A. Evans,et al. An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .
[5] David R. Forsey,et al. Multiresolution Surface Reconstruction for Hierarchical B-splines , 1998, Graphics Interface.
[6] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[7] David R. Forsey,et al. Surface fitting with hierarchical splines , 1995, TOGS.
[8] Tom Lyche,et al. T-spline Simplication and Local Renement , 2004 .
[9] Jun Wang,et al. Parallel and adaptive surface reconstruction based on implicit PHT-splines , 2011, Comput. Aided Geom. Des..
[10] Gábor Renner,et al. Advanced surface fitting techniques , 2002, Comput. Aided Geom. Des..
[11] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[12] T. Hughes,et al. Local refinement of analysis-suitable T-splines , 2012 .
[13] Jiansong Deng,et al. Polynomial splines over general T-meshes , 2010, The Visual Computer.
[14] Bert Jüttler,et al. Algorithms and Data Structures for Truncated Hierarchical B-splines , 2012, MMCS.
[15] Yimin Wang,et al. Curvature-guided adaptive TT-spline surface fitting , 2013, Comput. Aided Des..
[16] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[17] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[18] Kai Hormann,et al. Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.
[19] Bert Jüttler,et al. On the completeness of hierarchical tensor-product B-splines , 2014, J. Comput. Appl. Math..
[20] Michael A. Scott,et al. Isogeometric spline forests , 2014 .
[21] Thomas J. R. Hughes,et al. Conformal solid T-spline construction from boundary T-spline representations , 2013 .
[22] Bert Jüttler,et al. Bases and dimensions of bivariate hierarchical tensor-product splines , 2013, J. Comput. Appl. Math..
[23] T. Hughes,et al. Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline , 2012 .
[24] Andrea Bressan,et al. Some properties of LR-splines , 2013, Comput. Aided Geom. Des..
[25] Jiansong Deng,et al. Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..
[26] Nicholas S. North,et al. T-spline simplification and local refinement , 2004, SIGGRAPH 2004.
[27] Hendrik Speleers,et al. Effortless quasi-interpolation in hierarchical spaces , 2015, Numerische Mathematik.
[28] Günther Greiner,et al. Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines , 2010 .
[29] Hendrik Speleers,et al. Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..
[30] Michael S. Floater,et al. Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..
[31] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[32] T. Hughes,et al. Converting an unstructured quadrilateral mesh to a standard T-spline surface , 2011 .