Early Stage Biomineralization in the Periostracum of the ‘Living Fossil’ Bivalve Neotrigonia
暂无分享,去创建一个
Antonio G. Checa | E. Harper | C. Salas | Elizabeth M. Harper | Carmen Salas | Juan de Dios Bueno-Pérez | A. Checa
[1] Frédéric Marin,et al. Molluscan shell proteins , 2004 .
[2] Harry Mutvei,et al. Crystallographic control on the substructure of nacre tablets. , 2013, Journal of structural biology.
[3] G. Rouse,et al. Assessing the molluscan hypothesis Serialia (Monoplacophora+Polyplacophora) using novel molecular data. , 2010, Molecular phylogenetics and evolution.
[4] E. M. H. Arper,et al. Evolutionary response by bivalves to changing Phanerozoic sea-water chemistry , 1997 .
[5] David L. Kaplan,et al. Mollusc shell structures: novel design strategies for synthetic materials , 1998 .
[6] A. Bubel. An electron-microscope study of periostracum formation in some marine bivalves. I. The origin of the periostracum , 1973, Marine Biology.
[7] John D. Taylor,et al. The influence of the periostracum on the shell structure of bivalve molluscs , 2005, Calcified Tissue Research.
[8] C. Richardson,et al. A histological and ultrastructural study of the cells of the mantle edge of a marine bivalve, Cerastoderma edule. , 1981, Tissue & cell.
[9] H. Liao,et al. Tissue responses to natural aragonite (Margaritifera shell) implants in vivo. , 2000, Biomaterials.
[10] A. Saleuddin. An electron microscopic study of the formation and structure of the periostracum in Astarte (Bivalvia) , 1974 .
[11] A. Zieritz,et al. Variability, function and phylogenetic significance of periostracal microprojections in unionoid bivalves (Mollusca) , 2011 .
[12] H. Mutvei. Ultrastructural Characteristics of the Nacre in Some Gastropods , 1978 .
[13] H. Mutvei. The nacreous layer inMytilus, Nucula, andUnio (Bivalvia) , 1977, Calcified Tissue Research.
[14] E. Glover,et al. Needles and pins: acicular crystalline periostracal calcification in venerid bivalves (Bivalvia: Veneridae) , 2010 .
[15] S. Stanley. Neotrigonia, the Sole Surviving Genus of the Trigoniidae (Bivalvia, Mollusca) , 1984 .
[16] A. Rodríguez-Navarro,et al. Geometrical and crystallographic constraints determine the self-organization of shell microstructures in Unionidae (Bivalvia: Mollusca) , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[17] Antonio G. Checa,et al. The periostracum of Digitaria digitaria (Bivalvia: Astartidae): formation and structure , 2012 .
[18] E. Glover,et al. A molecular phylogeny of heterodont bivalves (Mollusca: Bivalvia: Heterodonta): new analyses of 18S and 28S rRNA genes , 2007 .
[19] E. Harper,et al. Origin and Expansion of Foliated Microstructure in Pteriomorph Bivalves , 2008, The Biological Bulletin.
[20] H. Nakahara,et al. An electron microscope study of the formation of the periostracum of Macrocallista maculata. , 1967, Calcified tissue research.
[21] H. Nakahara,et al. An electron microscope study of the formation of the periostracum ofMacrocallista maculata , 2005, Calcified Tissue Research.
[22] A. Checa. A new model for periostracum and shell formation in Unionidae (Bivalvia, Mollusca). , 2000, Tissue & cell.
[23] J. G. Carter,et al. Environmental Relationships of Shell Form and Structure of Unionacean Bivalves , 1980 .
[24] H David Sheets,et al. Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape , 2006, Frontiers in Zoology.
[25] J. Cartwright,et al. Calcium carbonate polyamorphism and its role in biomineralization: how many amorphous calcium carbonates are there? , 2012, Angewandte Chemie.
[26] H. Mutvei. The nacreous layer in Mytilus, Nucula, and Unio (Bivalvia). Crystalline composition and nucleation of nacreous tablets. , 1977, Calcified tissue research.
[27] T. Ubukata. Architectural constraints on the morphogenesis of prismatic structure in Bivalvia , 1994 .
[28] E. R. Trueman,et al. The cuticle of the Aplacophora and its evolutionary significance in the Mollusca , 2009 .
[29] J. G. Carter,et al. Calcification in the bivalve periostracum , 1975 .
[30] H. Toma,et al. Confocal Raman and electronic microscopy studies on the topotactic conversion of calcium carbonate from Pomacea lineate shells into hydroxyapatite bioceramic materials in phosphate media. , 2010, Micron.
[31] A. Saleuddin,et al. The Mode of Formation and the Structure of the Periostracum , 1983 .
[32] K. Ramalingam,et al. Histochemical significance of green metachromasia to Toluidine blue , 2004, Histochemie.
[33] T. J. Palmer,et al. RAPID COMMUNICATION Evolutionary response by bivalves to changing Phanerozoic sea-water chemistry , 1997, Geological Magazine.
[34] A. Zhuravlev,et al. Escalation and ecological selectively of mineralogy in the Cambrian Radiation of skeletons , 2012 .
[35] Rizhi Wang,et al. A microstructural study of individual nacre tablet of Pinctada maxima. , 2013, Journal of structural biology.
[36] J. G. Carter. Evolutionary Significance of Shell Microstructure in the Palaeotaxodonta, Pteriomorphia and Isofilibranchia (Bivalvia: Mollusca) , 1991 .
[37] E. Harper,et al. The Mesozoic marine revolution and epifaunal bivalves , 1993 .
[38] Sanford M. Simon,et al. Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells , 2002, The Journal of cell biology.
[39] B. Morton. The functional morphology of Neotrigonia margaritacea (Bivalvia: Trigoniacea), with a discussion of phylogenetic affinities , 1987 .
[40] M. Tevesz. Structure and habits of the ‘living fossil’ pelecypod Neotrigonia , 1975 .
[41] E. Harper,et al. Organization and mode of secretion of the granular prismatic microstructure of Entodesma navicula (Bivalvia: Mollusca) , 2009 .
[42] John D. Taylor,et al. The mechanical properties of bivalve (Mollusca) shell structures , 1972 .
[43] J. G. Carter,et al. Functional and phylogenetic significance of projecting periostracal structures in the Bivalvia (Mollusca) , 1980 .
[44] J. G. Carter. Skeletal biomineralization : patterns, processes, and evolutionary trends , 1991 .
[45] C. Yonge. Mantle margins with a revision of siphonal types in the Bivalvia , 1982 .
[46] G. Bigatti,et al. EXTRAORDINARY FLEXIBLE SHELL SCULPTURE: THE STRUCTURE AND FORMATION OF CALCIFIED PERIOSTRACAL LAMELLAE IN LUCINA PENSYLVANICA (BIVALVIA: LUCINIDAE) , 2004 .
[47] Steve Weiner,et al. Mollusk shell formation: a source of new concepts for understanding biomineralization processes. , 2006, Chemistry.
[48] Takashi Kato,et al. An Acidic Matrix Protein, Pif, Is a Key Macromolecule for Nacre Formation , 2009, Science.
[49] Antonio G. Checa,et al. Periostracal mineralization in the gastrochaenid bivalve Spengleria , 2014 .
[50] R. Fortey. Survivors: The Animals and Plants that Time has Left Behind , 2011 .
[51] G. Clark. Shell Growth in the Marine Environment: Approaches to the Problem of Marginal Calcification , 1976 .
[52] M. Neumann,et al. Simple Method for Reduction of Autofluorescence in Fluorescence Microscopy , 2002, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.
[53] Patricia M. Dove,et al. An Overview of Biomineralization Processes and the Problem of the Vital Effect , 2003 .
[54] Frédéric Marin,et al. A marriage of bone and nacre , 1998, Nature.
[55] P. Sharma,et al. Phylogenetic analysis of four nuclear protein-encoding genes largely corroborates the traditional classification of Bivalvia (Mollusca). , 2012, Molecular phylogenetics and evolution.
[56] G. Sridharan,et al. Toluidine blue: A review of its chemistry and clinical utility , 2012, Journal of oral and maxillofacial pathology : JOMFP.
[57] J. G. Carter. Ecology and Evolution of the Gastrochaenacea ( Mollusca , Bivalvia ) with Notes on the Evolution of the Endolithic Habitat , 2009 .
[58] A. Sánchez-Navas,et al. Crystal Growth in the Foliated Aragonite of Monoplacophorans (Mollusca) , 2009 .
[59] A. Bubel. An electron-microscope study of periostracum formation in some marine bivalves. II. The cells lining the periostracal groove , 1973, Marine Biology.
[60] T. A. Darragh. The Cainozoic Trigoniidae of Australia , 1986 .
[61] Karl M. Wilbur,et al. 6 – Shell Formation , 1983 .
[62] M. Lamghari,et al. Stimulation of bone marrow cells and bone formation by nacre: in vivo and in vitro studies. , 1999, Bone.
[63] A. Hall,et al. The shell structure and mineralogy of the Bivalvia , 1969 .
[64] S. Weiner,et al. On how proteins interact with crystals and their effect on crystal formation , 2001, Zeitschrift für Kardiologie.
[65] J. Vinther. THE CANAL SYSTEM IN SCLERITES OF LOWER CAMBRIAN SINOSACHITES (HALKIERIIDAE: SACHITIDA): SIGNIFICANCE FOR THE MOLLUSCAN AFFINITIES OF THE SACHITIDS , 2009 .
[66] E. Harper,et al. Spikey Bivalves: Intra-Periostracal Crystal Growth in Anomalodesmatans , 2010, The Biological Bulletin.
[67] K. Miyazono. Signal transduction by bone morphogenetic protein receptors: functional roles of Smad proteins. , 1999, Bone.
[68] O. Delattre,et al. Nacre/bone interface changes in durable nacre endosseous implants in sheep. , 2005, Biomaterials.
[69] C. Yonge. Mantle Fusion in the Lamellibranchia , 1957 .
[70] G. Vermeij,et al. Molecular Systematics and Phylogeography of Mollusks , 2003 .
[71] L. Liljedahl. Silurozodus, new genus, the oldest known member of the Trigonioida (Bivalvia, Mollusca) , 1992 .
[72] Alejandro Criado,et al. Inside Cover: [16]Cloverphene: a Clover‐Shaped cata‐Condensed Nanographene with Sixteen Fused Benzene Rings (Angew. Chem. Int. Ed. 1/2012) , 2012 .
[73] J. Neff. Ultrastructural studies of periostracum formation in the hard shelled clam Mercenaria mercenaria (L). , 1972, Tissue & cell.