Early Stage Biomineralization in the Periostracum of the ‘Living Fossil’ Bivalve Neotrigonia

A detailed investigation of the shell formation of the palaeoheterodont ‘living fossil’ Neotrigonia concentrated on the timing and manufacture of the calcified ‘bosses’ which stud the outside of all trigonioid bivalves (extant and fossil) has been conducted. Electron microscopy and optical microscopy revealed that Neotrigonia spp. have a spiral-shaped periostracal groove. The periostracum itself is secreted by the basal cell, as a thin dark pellicle, becoming progressively transformed into a thin dark layer by additions of secretions from the internal outer mantle fold. Later, intense secretion of the internal surface of the outer mantle fold forms a translucent layer, which becomes transformed by tanning into a dark layer. The initiation of calcified bosses occurred at a very early stage of periostracum formation, deep within the periostracal groove immediately below the initialmost dark layer. At this stage, they consist of a series of polycyclically twinned crystals. The bosses grow as the periostracum traverse through the periostracal groove, in coordination with the thickening of the dark periostracal layer and until, upon reaching the mantle edge, they impinge upon each other and become transformed into large prisms separated by dark periostracal walls. In conclusion, the initial bosses and the external part of the prismatic layer are fully intraperiostracal. With later growth, the prisms transform into fibrous aggregates, although the details of the process are unknown. This reinforces the relationships with other groups that have the ability to form intraperiostracal calcifications, for example the unionoids with which the trigonioids form the clade Paleoheterodonta. The presence of similar structures in anomalodesmatans and other euheterodonts raises the question of whether this indicates a relationship or represents a convergence. The identification of very early calcification within an organic sheet has interesting implications for our understanding of how shells may have evolved.

[1]  Frédéric Marin,et al.  Molluscan shell proteins , 2004 .

[2]  Harry Mutvei,et al.  Crystallographic control on the substructure of nacre tablets. , 2013, Journal of structural biology.

[3]  G. Rouse,et al.  Assessing the molluscan hypothesis Serialia (Monoplacophora+Polyplacophora) using novel molecular data. , 2010, Molecular phylogenetics and evolution.

[4]  E. M. H. Arper,et al.  Evolutionary response by bivalves to changing Phanerozoic sea-water chemistry , 1997 .

[5]  David L. Kaplan,et al.  Mollusc shell structures: novel design strategies for synthetic materials , 1998 .

[6]  A. Bubel An electron-microscope study of periostracum formation in some marine bivalves. I. The origin of the periostracum , 1973, Marine Biology.

[7]  John D. Taylor,et al.  The influence of the periostracum on the shell structure of bivalve molluscs , 2005, Calcified Tissue Research.

[8]  C. Richardson,et al.  A histological and ultrastructural study of the cells of the mantle edge of a marine bivalve, Cerastoderma edule. , 1981, Tissue & cell.

[9]  H. Liao,et al.  Tissue responses to natural aragonite (Margaritifera shell) implants in vivo. , 2000, Biomaterials.

[10]  A. Saleuddin An electron microscopic study of the formation and structure of the periostracum in Astarte (Bivalvia) , 1974 .

[11]  A. Zieritz,et al.  Variability, function and phylogenetic significance of periostracal microprojections in unionoid bivalves (Mollusca) , 2011 .

[12]  H. Mutvei Ultrastructural Characteristics of the Nacre in Some Gastropods , 1978 .

[13]  H. Mutvei The nacreous layer inMytilus, Nucula, andUnio (Bivalvia) , 1977, Calcified Tissue Research.

[14]  E. Glover,et al.  Needles and pins: acicular crystalline periostracal calcification in venerid bivalves (Bivalvia: Veneridae) , 2010 .

[15]  S. Stanley Neotrigonia, the Sole Surviving Genus of the Trigoniidae (Bivalvia, Mollusca) , 1984 .

[16]  A. Rodríguez-Navarro,et al.  Geometrical and crystallographic constraints determine the self-organization of shell microstructures in Unionidae (Bivalvia: Mollusca) , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[17]  Antonio G. Checa,et al.  The periostracum of Digitaria digitaria (Bivalvia: Astartidae): formation and structure , 2012 .

[18]  E. Glover,et al.  A molecular phylogeny of heterodont bivalves (Mollusca: Bivalvia: Heterodonta): new analyses of 18S and 28S rRNA genes , 2007 .

[19]  E. Harper,et al.  Origin and Expansion of Foliated Microstructure in Pteriomorph Bivalves , 2008, The Biological Bulletin.

[20]  H. Nakahara,et al.  An electron microscope study of the formation of the periostracum of Macrocallista maculata. , 1967, Calcified tissue research.

[21]  H. Nakahara,et al.  An electron microscope study of the formation of the periostracum ofMacrocallista maculata , 2005, Calcified Tissue Research.

[22]  A. Checa A new model for periostracum and shell formation in Unionidae (Bivalvia, Mollusca). , 2000, Tissue & cell.

[23]  J. G. Carter,et al.  Environmental Relationships of Shell Form and Structure of Unionacean Bivalves , 1980 .

[24]  H David Sheets,et al.  Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape , 2006, Frontiers in Zoology.

[25]  J. Cartwright,et al.  Calcium carbonate polyamorphism and its role in biomineralization: how many amorphous calcium carbonates are there? , 2012, Angewandte Chemie.

[26]  H. Mutvei The nacreous layer in Mytilus, Nucula, and Unio (Bivalvia). Crystalline composition and nucleation of nacreous tablets. , 1977, Calcified tissue research.

[27]  T. Ubukata Architectural constraints on the morphogenesis of prismatic structure in Bivalvia , 1994 .

[28]  E. R. Trueman,et al.  The cuticle of the Aplacophora and its evolutionary significance in the Mollusca , 2009 .

[29]  J. G. Carter,et al.  Calcification in the bivalve periostracum , 1975 .

[30]  H. Toma,et al.  Confocal Raman and electronic microscopy studies on the topotactic conversion of calcium carbonate from Pomacea lineate shells into hydroxyapatite bioceramic materials in phosphate media. , 2010, Micron.

[31]  A. Saleuddin,et al.  The Mode of Formation and the Structure of the Periostracum , 1983 .

[32]  K. Ramalingam,et al.  Histochemical significance of green metachromasia to Toluidine blue , 2004, Histochemie.

[33]  T. J. Palmer,et al.  RAPID COMMUNICATION Evolutionary response by bivalves to changing Phanerozoic sea-water chemistry , 1997, Geological Magazine.

[34]  A. Zhuravlev,et al.  Escalation and ecological selectively of mineralogy in the Cambrian Radiation of skeletons , 2012 .

[35]  Rizhi Wang,et al.  A microstructural study of individual nacre tablet of Pinctada maxima. , 2013, Journal of structural biology.

[36]  J. G. Carter Evolutionary Significance of Shell Microstructure in the Palaeotaxodonta, Pteriomorphia and Isofilibranchia (Bivalvia: Mollusca) , 1991 .

[37]  E. Harper,et al.  The Mesozoic marine revolution and epifaunal bivalves , 1993 .

[38]  Sanford M. Simon,et al.  Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells , 2002, The Journal of cell biology.

[39]  B. Morton The functional morphology of Neotrigonia margaritacea (Bivalvia: Trigoniacea), with a discussion of phylogenetic affinities , 1987 .

[40]  M. Tevesz Structure and habits of the ‘living fossil’ pelecypod Neotrigonia , 1975 .

[41]  E. Harper,et al.  Organization and mode of secretion of the granular prismatic microstructure of Entodesma navicula (Bivalvia: Mollusca) , 2009 .

[42]  John D. Taylor,et al.  The mechanical properties of bivalve (Mollusca) shell structures , 1972 .

[43]  J. G. Carter,et al.  Functional and phylogenetic significance of projecting periostracal structures in the Bivalvia (Mollusca) , 1980 .

[44]  J. G. Carter Skeletal biomineralization : patterns, processes, and evolutionary trends , 1991 .

[45]  C. Yonge Mantle margins with a revision of siphonal types in the Bivalvia , 1982 .

[46]  G. Bigatti,et al.  EXTRAORDINARY FLEXIBLE SHELL SCULPTURE: THE STRUCTURE AND FORMATION OF CALCIFIED PERIOSTRACAL LAMELLAE IN LUCINA PENSYLVANICA (BIVALVIA: LUCINIDAE) , 2004 .

[47]  Steve Weiner,et al.  Mollusk shell formation: a source of new concepts for understanding biomineralization processes. , 2006, Chemistry.

[48]  Takashi Kato,et al.  An Acidic Matrix Protein, Pif, Is a Key Macromolecule for Nacre Formation , 2009, Science.

[49]  Antonio G. Checa,et al.  Periostracal mineralization in the gastrochaenid bivalve Spengleria , 2014 .

[50]  R. Fortey Survivors: The Animals and Plants that Time has Left Behind , 2011 .

[51]  G. Clark Shell Growth in the Marine Environment: Approaches to the Problem of Marginal Calcification , 1976 .

[52]  M. Neumann,et al.  Simple Method for Reduction of Autofluorescence in Fluorescence Microscopy , 2002, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[53]  Patricia M. Dove,et al.  An Overview of Biomineralization Processes and the Problem of the Vital Effect , 2003 .

[54]  Frédéric Marin,et al.  A marriage of bone and nacre , 1998, Nature.

[55]  P. Sharma,et al.  Phylogenetic analysis of four nuclear protein-encoding genes largely corroborates the traditional classification of Bivalvia (Mollusca). , 2012, Molecular phylogenetics and evolution.

[56]  G. Sridharan,et al.  Toluidine blue: A review of its chemistry and clinical utility , 2012, Journal of oral and maxillofacial pathology : JOMFP.

[57]  J. G. Carter Ecology and Evolution of the Gastrochaenacea ( Mollusca , Bivalvia ) with Notes on the Evolution of the Endolithic Habitat , 2009 .

[58]  A. Sánchez-Navas,et al.  Crystal Growth in the Foliated Aragonite of Monoplacophorans (Mollusca) , 2009 .

[59]  A. Bubel An electron-microscope study of periostracum formation in some marine bivalves. II. The cells lining the periostracal groove , 1973, Marine Biology.

[60]  T. A. Darragh The Cainozoic Trigoniidae of Australia , 1986 .

[61]  Karl M. Wilbur,et al.  6 – Shell Formation , 1983 .

[62]  M. Lamghari,et al.  Stimulation of bone marrow cells and bone formation by nacre: in vivo and in vitro studies. , 1999, Bone.

[63]  A. Hall,et al.  The shell structure and mineralogy of the Bivalvia , 1969 .

[64]  S. Weiner,et al.  On how proteins interact with crystals and their effect on crystal formation , 2001, Zeitschrift für Kardiologie.

[65]  J. Vinther THE CANAL SYSTEM IN SCLERITES OF LOWER CAMBRIAN SINOSACHITES (HALKIERIIDAE: SACHITIDA): SIGNIFICANCE FOR THE MOLLUSCAN AFFINITIES OF THE SACHITIDS , 2009 .

[66]  E. Harper,et al.  Spikey Bivalves: Intra-Periostracal Crystal Growth in Anomalodesmatans , 2010, The Biological Bulletin.

[67]  K. Miyazono Signal transduction by bone morphogenetic protein receptors: functional roles of Smad proteins. , 1999, Bone.

[68]  O. Delattre,et al.  Nacre/bone interface changes in durable nacre endosseous implants in sheep. , 2005, Biomaterials.

[69]  C. Yonge Mantle Fusion in the Lamellibranchia , 1957 .

[70]  G. Vermeij,et al.  Molecular Systematics and Phylogeography of Mollusks , 2003 .

[71]  L. Liljedahl Silurozodus, new genus, the oldest known member of the Trigonioida (Bivalvia, Mollusca) , 1992 .

[72]  Alejandro Criado,et al.  Inside Cover: [16]Cloverphene: a Clover‐Shaped cata‐Condensed Nanographene with Sixteen Fused Benzene Rings (Angew. Chem. Int. Ed. 1/2012) , 2012 .

[73]  J. Neff Ultrastructural studies of periostracum formation in the hard shelled clam Mercenaria mercenaria (L). , 1972, Tissue & cell.