The L(2,1)-labelling problem for cubic Cayley graphs on dihedral groups

A k-L(2,1)-labelling of a graph G is a mapping f:V(G)→{0,1,2,…,k} such that |f(u)−f(v)|≥2 if uv∈E(G) and f(u)≠f(v) if u,v are distance two apart. The smallest positive integer k such that G admits a k-L(2,1)-labelling is called the λ-number of G. In this paper we study this quantity for cubic Cayley graphs (other than the prism graphs) on dihedral groups, which are called brick product graphs or honeycomb toroidal graphs. We prove that the λ-number of such a graph is between 5 and 7, and moreover we give a characterisation of such graphs with λ-number 5.

[1]  Jeong-Hyun Kang,et al.  L(2, 1)-Labeling of Hamiltonian graphs with Maximum Degree 3 , 2008, SIAM J. Discret. Math..

[2]  Pranava K. Jha,et al.  On L(2, 1)-labeling of the Cartesian product of a cycle and a path , 2000, Ars Comb..

[3]  W. K. Hale Frequency assignment: Theory and applications , 1980, Proceedings of the IEEE.

[4]  Mohammad R. Salavatipour,et al.  A bound on the chromatic number of the square of a planar graph , 2005, J. Comb. Theory, Ser. B.

[5]  Gilbert MURAZ,et al.  L 2 英語摩擦音の知覚における高周波数帯域情報の利用 , 2012 .

[6]  D. Maru,et al.  Symmetries of Hexagonal Molecular Graphs on the Torus , 2000 .

[7]  Patrick Bahls Channel assignment on Cayley graphs , 2011, J. Graph Theory.

[8]  C. C. Chen,et al.  On a class of Hamiltonian laceable 3-regular graphs , 1996, Discret. Math..

[9]  Sanming Zhou,et al.  Labeling outerplanar graphs with maximum degree three , 2013, Discret. Appl. Math..

[10]  Wenjun Xiao,et al.  Further mathematical properties of Cayley digraphs applied to hexagonal and honeycomb meshes , 2007, Discret. Appl. Math..

[11]  D. Gonçalves,et al.  On the L(p, 1)-labelling of graphs , 2008, Discret. Math..

[12]  Sanming Zhou A channel assignment problem for optical networks modelled by Cayley graphs , 2004, Theor. Comput. Sci..

[13]  Sanming Zhou,et al.  Distance-two labellings of Hamming graphs , 2009, Discret. Appl. Math..

[14]  Brian Alspach,et al.  Honeycomb toroidal graphs are Cayley graphs , 2009, Inf. Process. Lett..

[15]  Tiziana Calamoneri,et al.  The L(h, k)-Labelling Problem: An Updated Survey and Annotated Bibliography , 2011, Comput. J..

[16]  Hong-Jian Lai,et al.  Generalized honeycomb torus is Hamiltonian , 2004, Inf. Process. Lett..

[17]  Daniel Král,et al.  A Theorem about the Channel Assignment Problem , 2003, SIAM J. Discret. Math..

[18]  John P. Georges,et al.  On generalized Petersen graphs labeled with a condition at distance two , 2002, Discret. Math..

[19]  Jan van Leeuwen,et al.  Approximations for lambda-Colorings of Graphs , 2004, Comput. J..

[20]  Gerard J. Chang,et al.  The L(2, 1)-Labeling Problem on Graphs , 1996, SIAM J. Discret. Math..

[21]  Jerrold R. Griggs,et al.  Labelling Graphs with a Condition at Distance 2 , 1992, SIAM J. Discret. Math..

[22]  Xuding Zhu,et al.  Circular Distance Two Labeling and the lambda-Number for Outerplanar Graphs , 2005, SIAM J. Discret. Math..

[23]  Ivan Stojmenovic,et al.  Honeycomb Networks: Topological Properties and Communication Algorithms , 1997, IEEE Trans. Parallel Distributed Syst..

[24]  Rossella Petreschi,et al.  L(h, 1)-labeling subclasses of planar graphs , 2004, J. Parallel Distributed Comput..

[25]  Saverio Caminiti,et al.  A General Approach to L(h,k)-Label Interconnection Networks , 2008, Journal of Computer Science and Technology.

[26]  Sanming Zhou,et al.  No-hole 2-distant colorings for Cayley graphs on finitely generated abelian groups , 2007, Discret. Math..

[27]  Jan van Leeuwen,et al.  Approximations for -Coloring of Graphs , 2004 .

[28]  Sanming Zhou,et al.  Labelling Cayley Graphs on Abelian Groups , 2005, SIAM J. Discret. Math..

[29]  H. Coxeter Self-dual configurations and regular graphs , 1950 .

[30]  Bruce A. Reed,et al.  Griggs and Yeh's Conjecture and L(p, 1)-labelings , 2012, SIAM J. Discret. Math..

[31]  Li-Yen Hsu,et al.  Generalized honeycomb torus , 2003, Inf. Process. Lett..

[32]  Jing-Ho Yan,et al.  On L(2, 1)-labelings of Cartesian products of paths and cycles , 2004, Discret. Math..

[33]  Denise Sakai Troxell Labeling Chordal Graphs: Distance Two Condition , 1994, SIAM Journal on Discrete Mathematics.

[34]  Denise Sakai,et al.  Labeling Chordal Graphs: Distance Two Condition , 1994 .