The L(2,1)-labelling problem for cubic Cayley graphs on dihedral groups
暂无分享,去创建一个
[1] Jeong-Hyun Kang,et al. L(2, 1)-Labeling of Hamiltonian graphs with Maximum Degree 3 , 2008, SIAM J. Discret. Math..
[2] Pranava K. Jha,et al. On L(2, 1)-labeling of the Cartesian product of a cycle and a path , 2000, Ars Comb..
[3] W. K. Hale. Frequency assignment: Theory and applications , 1980, Proceedings of the IEEE.
[4] Mohammad R. Salavatipour,et al. A bound on the chromatic number of the square of a planar graph , 2005, J. Comb. Theory, Ser. B.
[5] Gilbert MURAZ,et al. L 2 英語摩擦音の知覚における高周波数帯域情報の利用 , 2012 .
[6] D. Maru,et al. Symmetries of Hexagonal Molecular Graphs on the Torus , 2000 .
[7] Patrick Bahls. Channel assignment on Cayley graphs , 2011, J. Graph Theory.
[8] C. C. Chen,et al. On a class of Hamiltonian laceable 3-regular graphs , 1996, Discret. Math..
[9] Sanming Zhou,et al. Labeling outerplanar graphs with maximum degree three , 2013, Discret. Appl. Math..
[10] Wenjun Xiao,et al. Further mathematical properties of Cayley digraphs applied to hexagonal and honeycomb meshes , 2007, Discret. Appl. Math..
[11] D. Gonçalves,et al. On the L(p, 1)-labelling of graphs , 2008, Discret. Math..
[12] Sanming Zhou. A channel assignment problem for optical networks modelled by Cayley graphs , 2004, Theor. Comput. Sci..
[13] Sanming Zhou,et al. Distance-two labellings of Hamming graphs , 2009, Discret. Appl. Math..
[14] Brian Alspach,et al. Honeycomb toroidal graphs are Cayley graphs , 2009, Inf. Process. Lett..
[15] Tiziana Calamoneri,et al. The L(h, k)-Labelling Problem: An Updated Survey and Annotated Bibliography , 2011, Comput. J..
[16] Hong-Jian Lai,et al. Generalized honeycomb torus is Hamiltonian , 2004, Inf. Process. Lett..
[17] Daniel Král,et al. A Theorem about the Channel Assignment Problem , 2003, SIAM J. Discret. Math..
[18] John P. Georges,et al. On generalized Petersen graphs labeled with a condition at distance two , 2002, Discret. Math..
[19] Jan van Leeuwen,et al. Approximations for lambda-Colorings of Graphs , 2004, Comput. J..
[20] Gerard J. Chang,et al. The L(2, 1)-Labeling Problem on Graphs , 1996, SIAM J. Discret. Math..
[21] Jerrold R. Griggs,et al. Labelling Graphs with a Condition at Distance 2 , 1992, SIAM J. Discret. Math..
[22] Xuding Zhu,et al. Circular Distance Two Labeling and the lambda-Number for Outerplanar Graphs , 2005, SIAM J. Discret. Math..
[23] Ivan Stojmenovic,et al. Honeycomb Networks: Topological Properties and Communication Algorithms , 1997, IEEE Trans. Parallel Distributed Syst..
[24] Rossella Petreschi,et al. L(h, 1)-labeling subclasses of planar graphs , 2004, J. Parallel Distributed Comput..
[25] Saverio Caminiti,et al. A General Approach to L(h,k)-Label Interconnection Networks , 2008, Journal of Computer Science and Technology.
[26] Sanming Zhou,et al. No-hole 2-distant colorings for Cayley graphs on finitely generated abelian groups , 2007, Discret. Math..
[27] Jan van Leeuwen,et al. Approximations for -Coloring of Graphs , 2004 .
[28] Sanming Zhou,et al. Labelling Cayley Graphs on Abelian Groups , 2005, SIAM J. Discret. Math..
[29] H. Coxeter. Self-dual configurations and regular graphs , 1950 .
[30] Bruce A. Reed,et al. Griggs and Yeh's Conjecture and L(p, 1)-labelings , 2012, SIAM J. Discret. Math..
[31] Li-Yen Hsu,et al. Generalized honeycomb torus , 2003, Inf. Process. Lett..
[32] Jing-Ho Yan,et al. On L(2, 1)-labelings of Cartesian products of paths and cycles , 2004, Discret. Math..
[33] Denise Sakai Troxell. Labeling Chordal Graphs: Distance Two Condition , 1994, SIAM Journal on Discrete Mathematics.
[34] Denise Sakai,et al. Labeling Chordal Graphs: Distance Two Condition , 1994 .