Comprehensive assessment of sugarcane straw: implications for biomass and bioenergy production

Sugarcane straw, consisting of green tops and dry leaves, can be maintained on fields to improve soil quality, or harvested for bioenergy production. The optimum option between these two uses is still uncertain and requires further study. This study, conducted across three crop cycles, provides an assessment of the moisture, nutrients, ash, extractives, cellulose, hemicelluloses, and lignin contents of four sugarcane varieties across seven regions of south-central Brazil. Suitability of the straw fractions for nutrient recycling, bioelectricity, and second-generation ethanol production were also evaluated. Results showed that the sugarcane straw yield (dry mass) was 14.0 Mg ha−1, and the ratio of dry straw/fresh stalk was 12%. The composition of green tops and dry leaves differed consistently across varieties, sites, and crop cycles. Dry leaves represented 60% of the straw, but green tops contained about 70% of the total N, P, and K content. Therefore, green tops recycled up to four times more nutrients than dry leaves. Green tops also had six times higher moisture and greater chlorine content which decreased the mill process efficiency. In turn, dry leaves had higher lignin, cellulose, and hemicelluloses content, greater heating value (higher: 17.3 MJ kg−1; lower: 15.6 MJ kg−1) and tended to be a better second-generation ethanol production feedstock. Overall, the results show that it is preferable to use dry leaves for bioenergy production while leaving green tops on the field for nutrient recycling. This study pointed out that more efficient methods for separating these fractions in the field need to be developed. © 2017 Society of Chemical Industry and John Wiley & Sons, Ltd

[1]  F. Freire,et al.  Extração e exportação de nutrientes por variedades de cana-de-açúcar cultivadas sob irrigação plena , 2010 .

[2]  X. Liu,et al.  Ultimate analysis and heating value prediction of straw by near infrared spectroscopy. , 2009, Waste management.

[3]  R. O. Moutta,et al.  Enzymatic hydrolysis of sugarcane bagasse and straw mixtures pretreated with diluted acid , 2014 .

[4]  Larry L. Baxter,et al.  The implications of chlorine-associated corrosion on the operation of biomass-fired boilers , 2000 .

[5]  A. Chandel,et al.  Statistical Optimization of Sugarcane Leaves Hydrolysis into Simple Sugars by Dilute Sulfuric Acid Catalyzed Process , 2012, Sugar Tech.

[6]  Henrique Coutinho Junqueira Franco,et al.  Acúmulo de macronutrientes em cana-de-açúcar em função da adubação nitrogenada e dos resíduos culturais incorporados ao solo no plantio , 2007 .

[7]  T. K. Ghose Measurement of cellulase activities , 1987 .

[8]  Luiz Pereira Ramos,et al.  Sugarcane biomass for biorefineries: comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. , 2014, Carbohydrate polymers.

[9]  Heitor Cantarella,et al.  Infield greenhouse gas emissions from sugarcane soils in Brazil: effects from synthetic and organic fertilizer application and crop trash accumulation , 2013 .

[10]  P. Trivelin,et al.  Long-term decomposition of sugarcane harvest residues in Sao Paulo state, Brazil , 2012 .

[11]  J. L. Carvalho,et al.  Input of sugarcane post-harvest residues into the soil , 2013 .

[12]  V. Riviere,et al.  Value of cane trash in nitrogen nutrition of sugarcane , 1987, Plant and Soil.

[13]  Arnaldo Walter,et al.  Sugarcane straw availability, quality, recovery and energy use: A literature review , 2013 .

[14]  C. Farinas,et al.  2G ethanol from the whole sugarcane lignocellulosic biomass , 2015, Biotechnology for Biofuels.

[15]  R. G. Candido,et al.  Preliminary studies on fungal treatment of sugarcane straw for organosolv pulping , 2008 .

[16]  S. C. Rabelo,et al.  Effect of Anthraquinone on Alkaline Pretreatment and Enzymatic Kinetics of Sugarcane Bagasse Saccharification: Laboratory and Pilot Scale Approach , 2016 .

[17]  J. L. Carvalho,et al.  Contribution of above‐ and belowground bioenergy crop residues to soil carbon , 2017 .

[18]  F. Castelli,et al.  Radiation-use efficiency in flue-cured tobacco (Nicotiana tabacum L.): response to nitrogen supply, climatic variability and sink limitations , 2002 .

[19]  D. Feldman Wood—chemistry, ultrastructure, reactions, by D. Fengel and G. Wegener, Walter de Gruyter, Berlin and New York, 1984, 613 pp. Price: 245 DM , 1985 .

[20]  M. Andreotti,et al.  Acúmulo de nutrientes e decomposição do palhiço de cana em função de doses de vinhaça , 2015 .

[21]  Sugarcane Crop Residue Increases N2O and CO2 Emissions Under High Soil Moisture Conditions , 2014, Sugar Tech.

[22]  P. Trivelin,et al.  Nitrogênio proveniente da adubação nitrogenada e de resíduos culturais na nutrição da cana-planta , 2011 .

[23]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[24]  H. Franco,et al.  Impact of sugarcane trash on fertilizer requirements for São Paulo, Brazil , 2013 .

[25]  G. L. Miller Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar , 1959 .

[26]  R. M. Filho,et al.  Alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis and fermentation of sugarcane bagasse to ethanol , 2014 .

[27]  P. Trivelin,et al.  Aproveitamento pela cana-de-acar da adubao nitrogenada de plantio , 2008 .

[28]  P. Mazzola,et al.  Use of sugar cane straw as a source of cellulose for textile fiber production , 2013 .

[29]  P. Trivelin,et al.  Decomposição e liberação de nutrientes da palhada de cana-de-açúcar em campo , 1999 .

[30]  R Maciel Filho,et al.  Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. , 2011, Bioresource technology.

[31]  D. Karlen,et al.  Monitoring Soil Quality to Assess the Sustainability of Harvesting Corn Stover , 2011 .

[32]  B. Jenkins,et al.  Combustion properties of biomass , 1998 .

[33]  L. L. Dinardo-Miranda,et al.  Sugarcane straw and the populations of pests and nematodes , 2013 .

[34]  J. L. Carvalho,et al.  Agronomic and environmental implications of sugarcane straw removal: a major review , 2017 .

[35]  F. Santos,et al.  OTIMIZAÇÃO DO PRÉ-TRATAMENTO HIDROTÉRMICO DA PALHA DE CANA-DE-AÇÚCAR VISANDO À PRODUÇÃO DE ETANOL CELULÓSICO , 2014 .

[36]  M. L. C. Ripoli,et al.  Energy potential of sugar cane biomass in Brazil , 2000 .

[37]  Waldir Antonio Bizzo,et al.  The Generation Of Residual Biomass During The Production Of Bio-ethanol From Sugarcane, Its Characterization And Its Use In Energy Production , 2014 .

[38]  Peter J. Thorburn,et al.  Decomposition of sugarcane harvest residue in different climatic zones , 2007 .

[39]  Germán Aroca,et al.  Life cycle assessment of lignocellulosic bioethanol: Environmental impacts and energy balance , 2015 .

[40]  Aline Carvalho da Costa,et al.  Effects of the pretreatment method on high solids enzymatic hydrolysis and ethanol fermentation of the cellulosic fraction of sugarcane bagasse. , 2015, Bioresource technology.

[41]  S. Goddard,et al.  Biofuels from crop residue can reduce soil carbon and increase CO 2 emissions , 2014 .

[42]  J. L. Carvalho,et al.  How much sugarcane trash should be left on the soil , 2013 .

[43]  Adélia Aziz Alexandre Pozza,et al.  Suprimento do silicato de cálcio e a eficiência nutricional de variedades de cafeeiro , 2009 .

[44]  H. Chum,et al.  Evaluation of Brazilian Sugarcane Bagasse Characterization: An Interlaboratory Comparison Study. , 2016, Journal of AOAC International.

[45]  J. Carvalho,et al.  Matéria seca e acúmulo de nutrientes em genótipos de milho contrastantes quanto a aquisição de fósforo , 2007 .

[46]  F. Santos,et al.  Potencial da palha de cana-de-açúcar para produção de etanol , 2012 .

[47]  Martial Bernoux,et al.  Effect of sugarcane harvesting systems on soil carbon stocks in Brazil: an examination of existing data , 2011 .

[48]  J. L. Carvalho,et al.  Assessment of sugarcane trash for agronomic and energy purposes in Brazil , 2013 .

[49]  Seung‐Hwan Lee,et al.  Association of wet disk milling and ozonolysis as pretreatment for enzymatic saccharification of sugarcane bagasse and straw. , 2013, Bioresource technology.

[50]  M. Lindström,et al.  Assessment of chemical transformations in eucalyptus, sugarcane bagasse and straw during hydrothermal, dilute acid, and alkaline pretreatments , 2015 .

[51]  T. Wood,et al.  METHODS FOR MEASURING CELLULASE ACTIVITIES , 1988 .

[52]  Marti J. Anderson,et al.  A new method for non-parametric multivariate analysis of variance in ecology , 2001 .